Sample Size and Power Calculations

IPA/JPAL/CMF Training

Limuru, Kenya

28 July 2010

Owen Ozier
Department of Economics
University of California at Berkeley

Slides revised 14 September 2010

Thanks and Introduction

Thanks to everyone from JPAL/IPA who made this happen!

Thanks and Introduction

Thanks to everyone from JPAL/IPA who made this happen!

My background: randomized evaluations in Busia, Kenya.

Motivation

Motivation

Program evaluation:
 bringing the scientific method to social science

Motivation

Program evaluation:
 bringing the scientific method to social science

First steps:
Propose a hypothesis

Motivation

Program evaluation:
 bringing the scientific method to social science

First steps:
Propose a hypothesis
Design an experiment to test the hypothesis

Motivation

Program evaluation:
 bringing the scientific method to social science

First steps:
Propose a hypothesis
Design an experiment to test the hypothesis
This involves gathering data...

Motivation

Program evaluation:
 bringing the scientific method to social science

First steps:
Propose a hypothesis
Design an experiment to test the hypothesis
This involves gathering data...
...but how much data will we need?

Usually a lot

How this will work

"Numerical data should be kept for eternity; it's great stuff."

- Glenn Stevens, Boston University

Outline

(1) Motivation

Outline

(1) Motivation
(2) Probability basics

- Coin tossing

Outline

(1) Motivation
(2) Probability basics

- Coin tossing
(3) Power calculation
- Terminology/Concepts
- The Basic Calculation
- Clusters
- Covariates
- Details

Outline

(1) Motivation
(2) Probability basics

- Coin tossing
(3) Power calculation
- Terminology/Concepts
- The Basic Calculation
- Clusters
- Covariates
- Details
(4) Exercises

A hypothesis and a kind of test

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Accept" hypothesis if within some distance of the mean under the null; "Reject" otherwise.

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Accept" hypothesis if within some distance of the mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what distance cutoffs could we use?

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Accept" hypothesis if within some distance of the mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what distance cutoffs could we use?

Could accept (A) never,
(B) when exactly the mean (2 heads),
(C) when within 1 (1,2 , or 3 heads),
or (D) always.

A hypothesis and a kind of test

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Accept" hypothesis if within some distance of the mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what distance cutoffs could we use?

Could accept (A) never,
(B) when exactly the mean (2 heads),
(C) when within 1 (1, 2, or 3 heads),
or (D) always.

- We don't want to reject the null when it is true, though; How much accidental rejection would each possible cutoff give us?

Distribution of possible results

Distribution of numbers of heads in 4 tosses of a fair coin

Not enough data.

Not enough data.

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science.

Not enough data.

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science.
* (Except the "never reject, no matter what" rule. Not very useful.)

Not enough data.

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science.
* (Except the "never reject, no matter what" rule. Not very useful.)
- What about 20 coin tosses?

Distribution of possible results

Distribution of numbers of heads in 20 tosses of a fair coin

The normal distribution

As sample size increases more:

Distribution of numbers of heads in 100 tosses of a fair coin

Types of error

Test result

	"Reject Null,", Find an effect!	"Accept Null," Conclude no effect.
Truth:	Great!	"Type II Error" (low power)
There is an effect	Truth:	"Type I Error"
There is NO effect	Great!	

Types of error

Test result

	"Reject Null,"" Find an effect!	"Accept Null," Conclude no effect.		
Truth:	Great!	"Type II Error" (low power)		
There is an effect	Truth:	"Type I Error"		
(test size)			\quad Great! \quad	There is NO effect
:---:				

The probability of Type I error is what we just discussed: the "size" of the test. By convention, we are usually interested in tests of "size" 0.05 .

Types of error

Test result

	"Reject Null," Find an effect!	"Accept Null", Conclude no effect.
Truth:	Great!	"Type II Error" (low power)
There is an effect	Truth:	"Type I Error"
There is NO effect	Great!	

The probability of Type I error is what we just discussed: the "size" of the test. By convention, we are usually interested in tests of "size" 0.05.

The probability of Type II error is also very important; If $\mathrm{P}($ failure to detect an effect $)=1-\kappa$, then the power of the test is κ.

Types of error

Test result

	"Reject Null," Find an effect!	"Accept Null", Conclude no effect.
Truth:	Great!	"Type II Error" (low power)
There is an effect	Truth:	"Type I Error"
There is NO effect	Great!	

The probability of Type I error is what we just discussed: the "size" of the test. By convention, we are usually interested in tests of "size" 0.05.

The probability of Type II error is also very important; If $\mathrm{P}($ failure to detect an effect $)=1-\kappa$, then the power of the test is κ. Power depends on anticipated effect size; typical desired power is 80% or higher.

Rejecting H_{0} in critical region

Significance level (test size) α

Under an alternative:

Under an alternative:

Power would only be approximately 0.17

Under an alternative:

Suppose true effect were 3 SE's (Standard Errors):

Note: this example follows slides by Marc Shotland (JPAL).

Under an alternative:

Power would be approximately 0.85

Note: this example follows slides by Marc Shotland (JPAL).

Power calculation, visually

How the power calculation formula works

Note: see the related figure in the Toolkit paper.

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist' n .

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist' n .
$M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) \operatorname{SE}(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist' n .

$$
\operatorname{MDE}=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses the normal rather than t distribution (avoiding the D.O.F. issue).

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist' n.

$$
\operatorname{MDE}=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses the normal rather than t distribution (avoiding the D.O.F. issue). Where do these numbers come from, σ^{2} and the effect size? Two basic options:

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist' n.

$$
\operatorname{MDE}=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses the normal rather than t distribution (avoiding the D.O.F. issue). Where do these numbers come from, σ^{2} and the effect size? Two basic options:

- Consider standardized effect sizes in terms of standard deviations

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta}) \quad$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist' n.

$$
\operatorname{MDE}=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses the normal rather than t distribution (avoiding the D.O.F. issue). Where do these numbers come from, σ^{2} and the effect size? Two basic options:

- Consider standardized effect sizes in terms of standard deviations
- Draw on existing data: What is available that could inform your project?

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level. But in practice, we often randomize larger units.

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level. But in practice, we often randomize larger units.
Examples:

- Entire schools are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual pupil
- Classes within a school are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual pupil
- Households are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual family member
- Sub-district locations are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual road
- Microfinance branch offices are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual borrower

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level.
But in practice, we often randomize larger units.
Examples:

- Entire schools are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual pupil
- Classes within a school are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual pupil
- Households are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual family member
- Sub-district locations are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual road
- Microfinance branch offices are assigned to treatment or comparison groups, and we observe outcomes at the level of the individual borrower

What does this do?
It depends on how much variation is explained by the group each individual is in.

Intuitive example

You want to know how close the upcoming Kenyan referendum will be.

Intuitive example

You want to know how close the upcoming Kenyan referendum will be.
Method 1: Randomly select 50 people from entire Kenyan population

Intuitive example

You want to know how close the upcoming Kenyan referendum will be.
Method 1: Randomly select 50 people from entire Kenyan population
Method 2: Randomly select 5 families, and ask ten members of each extended family their opinion

The formula

Scale the effective standard error by:

$$
\text { DesignEffect }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation.

The formula

Scale the effective standard error by:
DesignEffect $=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}$
ρ ("rho") is the intra-class correlation. In practice (Stata): loneway and sampclus

The formula

Scale the effective standard error by:

$$
\text { DesignEffect }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation. In practice (Stata): loneway and sampclus

Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

The formula

Scale the effective standard error by:

$$
\text { DesignEffect }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation. In practice (Stata): loneway and sampclus

Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

But where does this ρ number come from? Two basic options:

The formula

Scale the effective standard error by:

$$
\text { DesignEffect }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation. In practice (Stata): loneway and sampclus

Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

But where does this ρ number come from? Two basic options:

- Consider what might be reasonable assumptions

The formula

Scale the effective standard error by:

$$
\text { DesignEffect }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation. In practice (Stata): loneway and sampclus

Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

But where does this ρ number come from? Two basic options:

- Consider what might be reasonable assumptions
- Draw on existing data (again): What is available that could inform your project?

Intra-class correlations we have known

Data source	ICC (ρ)
Madagascar Math + Language	0.5
Busia, Kenya Math + Language	0.22
Udaipur, India Math + Language	0.23
Mumbai, India Math + Language	0.29
Vadodara, India Math + Language	0.28
Busia, Kenya Math	0.62

Source: Marc Shotland (JPAL) slides

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.
- However, it may risk contaminating an otherwise clean randomized design. (randomizing was supposed to avoid omitted variable biases in OLS!)

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.
- However, it may risk contaminating an otherwise clean randomized design. (randomizing was supposed to avoid omitted variable biases in OLS!)
- Stratifying is a good option:

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.
- However, it may risk contaminating an otherwise clean randomized design. (randomizing was supposed to avoid omitted variable biases in OLS!)
- Stratifying is a good option:
- On baseline outcome values

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.
- However, it may risk contaminating an otherwise clean randomized design. (randomizing was supposed to avoid omitted variable biases in OLS!)
- Stratifying is a good option:
- On baseline outcome values
- On fixed observables that have high predictive power (parents' education, age, ...)

Baseline and other covariate data

- Controlling for covariates reduces the SE, so increases power.
- Baseline survey data on the outcome of interest is especially useful when the within-individual correlation of outcomes (in the absence of treatment) is high. Consider academic test scores, for example.
- However, it may risk contaminating an otherwise clean randomized design. (randomizing was supposed to avoid omitted variable biases in OLS!)
- Stratifying is a good option:
- On baseline outcome values
- On fixed observables that have high predictive power (parents' education, age, ...)
- On observables that delineate subpopulations you may want to test within (you might want to do another power calculation on this subsample)

Power calculation, visually

Kernel density estimate

Power calculation, visually

5.1 cm average per additional year in age; overall $\mathrm{SD}=12.1 \mathrm{~cm}$; within $\mathrm{SD}=7.21 \mathrm{~cm}$

Some things to watch out for

- Imperfect compliance with treatment:

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:
- Alternative test based on statistical work of Fisher in early $20^{\text {th }}$ century

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:
- Alternative test based on statistical work of Fisher in early $20^{\text {th }}$ century
- Issues with $1,2,3,1,2,3 \ldots$ if alphabetical, not a problem if order is random

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:
- Alternative test based on statistical work of Fisher in early $20^{\text {th }}$ century
- Issues with 1,2,3,1,2,3... if alphabetical, not a problem if order is random
- (recently: McKenzie and Bruhn)

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:
- Alternative test based on statistical work of Fisher in early $20^{\text {th }}$ century
- Issues with 1,2,3,1,2,3... if alphabetical, not a problem if order is random
- (recently: McKenzie and Bruhn)
- Much more: check out Duflo, Glennerster, and Kremer:

Using randomization in development economics research: a toolkit

Some things to watch out for

- Imperfect compliance with treatment:
- The most straightforward approach is to decrease the effect size.
- Multiple treatments:
- Optimal treatment structure depends on several things;

May be better to have control group larger than any of the treatment groups.

- To get started, calculate power for the smallest effect you hope to test.
- Multiple test correction may be needed later. (recently: Michael Anderson)
- How randomization is done:
- Alternative test based on statistical work of Fisher in early $20^{\text {th }}$ century
- Issues with 1,2,3,1,2,3... if alphabetical, not a problem if order is random
- (recently: McKenzie and Bruhn)
- Much more: check out Duflo, Glennerster, and Kremer:

Using randomization in development economics research: a toolkit

- "A first comment is that, despite all the precision of these formulas, power calculations involve substantial guess work in practice."

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into C:/ado/plus/s/ (typically).
- Various .do and .dta files

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into C:/ado/plus/s/ (typically).
- Various .do and .dta files
- type-I-error-reject-null-when-true.do
- type-II-error-fail-to-reject-when-alt-is-true.do
- sampsi-syntax.do
- icc-example.do
- SampsiExerciseB.do
here we need to adjust the directory in the .do file before running.

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into C:/ado/plus/s/ (typically).
- Various .do and .dta files
- type-l-error-reject-null-when-true.do
- type-II-error-fail-to-reject-when-alt-is-true.do
- sampsi-syntax.do
- icc-example.do
- SamnsiExerciseB do
here we need to adjust the directory in the .do file before running

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into C:/ado/plus/s/ (typically).
- Various .do and .dta files
- type-l-error-reject-null-when-true.do
- type-II-error-fail-to-reject-when-alt-is-true.do
- sampsi-syntax.do
- icc-example.do
- SampsiExerciseB.do
here we need to adjust the directory in the .do file before running

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into C:/ado/plus/s/ (typically).
- Various .do and .dta files
- type-l-error-reject-null-when-true.do
- type-II-error-fail-to-reject-when-alt-is-true.do
- sampsi-syntax.do
- icc-example.do
- SampsiExerciseB.do
here we need to adjust the directory in the .do file before running

Exercises

First make sure you have the files:

- Make sure sampclus is installed; either by using findit sampclus or by copying the two files into \mathbf{C} :/ado/plus/s/ (typically).
- Various .do and .dta files
- type-l-error-reject-null-when-true.do
- type-II-error-fail-to-reject-when-alt-is-true.do
- sampsi-syntax.do
- icc-example.do
- SampsiExerciseB.do here we need to adjust the directory in the .do file before running.

