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Problem Set 2 is due at 5pm on Thursday, September 19.

For this problem set, you will use Stata for each question. You should write a|.do file that generates
your answers; please submit this file via email when you turn in your problem set. Insert comments
in your |.do file to indicate where you are answering each part of each question.

1. Regression coefficients. (This problem has lots of short parts.)

(a)

Using any reasonable combination of Stata functions (such as uniform(), invnorm(),
or rnormal () ), generate a dataset of 10,000 observations with variables as follows. (Be
sure to set seed so that your code produces identical results when run twice.)

Generate three variables that are independently drawn from the distribution N(0,1):
ability, epsilonl, and epsilon2. Generate another independent variable, smallepsilon,
that is drawn from the normal with mean 0 and standard deviation 0.1 (variance 0.01).
Generate yet another independent variable, wideuniform, that is ¢/(—3,3) (drawn from
the uniform distribution, distributed between -3 and 3).

Next:

Generate education, so that education = ability + epsilonl.

Generate wagel, so that wagel = education + ability + epsilon2.

Generate wage2, so that wage2 = education + smallepsilon.

Generate noisywage?2, so that noisywage2 = wage2 + wideuniform.

Generate noisyeducation, so that noisyeducation = education + wideuniform.

Summarize the variables using sum. The standard deviations of ability, epsilonl, and
epsilon2 should all be close to 1. The standard deviations of education and wagel
are close to other square roots of integers. Which integers? Formally demonstrate why
this is the case in terms of the expectations or variances of normal distributions.

Type correlate, covariance to see the covariance matrix. What integer is the covari-
ance of ability and education close to? Formally demonstrate why this is the case in
terms of the expectations or variances of normal distributions.

In your sample, what is the value of the following ratio:
Cov(ability,education)/Var(ability)?

Type reg education ability. What is the coefficient on ability?

What integer is the covariance of wagel and education close to? In terms of expecta-
tions or variances of normal distributions, formally demonstrate why this is the case.


.do
.do

(2)

In your sample, what is the value of the following ratio:
Cov(wagel,education)/Var(education)?

Type reg wagel education. What is the coefficient on education?
Type reg wagel education ability. What is the coefficient on education?

Up to here, this problem dealt with basics of regression and potential biases when not
including important controls in regressions with observational data. Next we consider
attenuation bias. Type reg wage2 education. What is the coefficient on education?
Why?

Make a scatter plot scattering wage2 against education, overlaying the linear fit given
by the regression. This is relevant for visual comparison to the graphs you will make in
the next parts of the problem.

Now, type reg noisywage2 education. What is the coefficient on education? Why?

Make a scatter plot scattering noisywage2 against education, overlaying the linear
fit given by the regression. This should provide some visual intuition about why the
regression coefficient did or did not change between the previous parts of the problem
(parts [1j] and [11).

Now, type reg wage2 noisyeducation. What is the coefficient on education? What
simple fraction is that coefficient close to? In calculations you can do by hand, using the
data generating process, variances, and covariances, why is this the regression coefficient?

Make a scatter plot scattering wage2 against noisyeducation, overlaying the linear fit
given by the associated regression. This should provide some visual intuition about why
the regression coefficient did or did not change between parts [1j and

How do parts and relate to the “Attenuation bias” exercise and associated
formula from that handout in class (Lecture 2)?



2. Hospital example.

(a)

This problem simulated the hospital example that we discussed on the first day of class.
Using any reasonable combination of Stata functions (such as uniform(), invnorm(),
or rnormal () ), generate a dataset of 1,000 observations with variables as follows. Gen-
erate three variables that are independently drawn: let z be drawn from the normal
distribution A (0,4) (variance=4), while ul and u2 are drawn from (0, 1). Be sure to
set seed so that your code produces identical results when run twice.

Generate a variable illness that is a dummy (indicator) variable equal to one if ul >
0.5. This should be roughly half the observations.

Consider the cost of sickness, s = 5; the benefit of treatment, b = 4; and the cost of
going to the hospital, ¢ = 1. Generate potential outcomes: yOh is the outcome without
hospitalization with good health, so simply z; yOs is the outcome without hospitalization
when sick, so z — s; y1h is the outcome for hospitalizing the healthy, z — ¢; and y1s is
outcome for hospitalizing those who are sick, z — s+ b — c.

Scenario 1: treat the sick. Generate a variable, dS that is an indicator for going to
the hospital in this scenario: dS = illness. Generate the outcome, yS, based on the
potential outcomes. If someone is ill (i1lness == 1), and they go to the hospital
(dS == 1), then yS == y1s, and so on. Regress yS on dS. Is hospitalization associated
with a better or worse outcome? How does the answer relate to the formula b — ¢ — s
given in slides on the first day of class?

Scenario 2: randomize. Use u2 to determine whether someone goes to the hospital.
Generate a variable, dR that is an indicator for going to the hospital in this scenario:
dR = 1 only for the first 5000 observations when observations are sorted by u2. Generate
the outcome, yR, based on the potential outcomes. If someone is ill (illness == 1),
and they go to the hospital (dR == 1), then yR == y1s, and so on. Regress yR on dR. Is
hospitalization associated with a better or worse outcome? How does the answer relate
to the formula Ab — ¢ given in slides on the first day of class?

Scenario 3: randomize only among the sick. Regress yR on dR, but only on those for
who illness == 1. Is hospitalization associated with a better or worse outcome? How
does the answer relate to the formula b — ¢ given in slides on the first day of class?

Scenario 4: The slides on the first day of class also include an endogenous take-up
scenario in which instead of randomizing hospitalization, the study randomizes access
to the hospital. Construct this scenario (commenting carefully as you explain how you
do this), and run the regression. What is the result? How does it align with the formula
in the slides?



3. Diff-in-Diff. This problem builds on the “How Much Should We Trust Difference-in-
Differences Estimates?” exercise that you did in class. Simulate a data-generating process
with serially correlated errors. Specifically, generate a sample of 100 individual units (“peo-
ple”) that you will observe over time. For each unit ¢, draw a; ~ ¢(0,100). Then expand the
data set so that you have 30 observations per person; generate a time| variable that ranges
from 1 to 30 for each observation.

Now generate an error term ¢;; ~ N(0,4). Construct the outcome variable y; ; according to
the following process:

(a)

Yit = Q4 + EiLt + 0.5 % Eit—1

First, consider the case where treatment is randomly assigned across people and time
periods. Randomly choose half of your person-time observations to be assigned to treat-
ment. Write a|.do| that simulates such a process 250 times and then estimates two OLS
regressions of the outcome on treatment controlling for individual fixed effects and time
fixed effects. Estimate one specification with robust standard errors and another speci-
fication with standard errors clustered at the person level. Store the p-values associated
with each test of the hypothesis that the treatment effect is equal to zero. Do your
results suggest that the two tests are correctly sized?

Next, consider a setting where treatment is randomly phased in across people. In other
words, randomly choose half of the people in the sample to receive treatment; then, for
each treated individual, randomly select a start time between t = 11 and ¢t = 20. Once
the treatment starts for a given individual, it remains active in all future periods. Sim-
ulate this process 250 times, estimating the treatment effect of the randomly-generated
treatment while controlling for person FEs and time FEs; estimate a specification with
robust standard errors and another specification with standard errors clustered at the
person level. Store the p-values associated with each test of the hypothesis that the
treatment effect is equal to zero. Do your results suggest that the two tests are correctly
sized?

Modify your program so that the treatment starts in the same time period for all treated
observations. Estimate the specification with robust standard errors and the specifica-
tion with clustered standard errors 250 times (for 250 randomly-generated treatments).
Report the observed rejection probabilities. Do your results suggest that variation in
treatment timing mitigates the problem of serial correlation?


time
.do

4. Bad control. This problem follows the example in Mostly Harmless, section 3.2.3.

(a)

Using any reasonable combination of Stata functions (such as uniform(), invnorm(),
or rnormal () ), generate a dataset of 10,000 observations with variables as follows. Be
sure to set seed so that your code produces identical results when run twice. All four
of the variables above should be independent from one another.

i. Generate an ability variable that is ¢/ (—1,1) (uniformly distributed between -1
and 1);

ii. Generate a college indicator variable that is equal to one for a random half of the
observations;

iii. Generate epsilonl and epsilon2 so that they each have a standard normal distri-
bution.

Generate w0, a variable indicating whether someone would be a white-collar worker in
the absence of college. Interpreting epsilonl as inclination to be a white-collar worker,
w0 should be 1 whenever epsilonl is greater than zero, and it should be zero otherwise.

Next, generate two versions of the (potential outcome) white-collar indicator in the
presence of college that represent two scenarios. In the first scenario, college causes
all low-ability workers (ability< 0) to become white-collar, but doesn’t affect the
behavior of high-ability workers. Generate an indicator wiv1 for this scenario. In the
second scenario, college causes all high-ability workers (ability> 0) to become white-
collar, but doesn’t affect the behavior of low-ability workers. Generate an indicator wiv2
for this second scenario. Note that these are just potential outcomes, so they don’t yet
depend on whether the individual actually went to college; they just depend on ability
and wO.

Next, generate two versions of the actual white-collar indicator. Generate wvl so that
it equals wO for those who don’t go to college, and wivl for those who do. Likewise,
generate wv2 so that it equals wO for those who don’t go to college, and wiv2 for those
who do.

Next, generate the earnings potential outcome in the absence of college. Generate y0 so
that it equals three times ability plus epsilon2.

Next, generate the earnings potential outcome in the presence of college. Generate y1
so that it equals yO plus one.

Next, generate actual earnings. Generate y so that it equals yO when college == 0,
and y1 when college == 1.

We are ready to run a regression. First, regress wvl on college; the coefficient should
be about 0.25. Why?

Next, regress wv2 on college; the coefficient should also be about 0.25. Why?

Finally, following the example in Mostly Harmless Econometrics, regress y on college,
but only in the sample where wvl == 1. As the book suggests, this should be the sum
of a causal effect and a selection bias term.

i. What should the causal effect be, in expectation? Why?



ii. What should each of the expectations in the selection bias term equal, in expecta-
tion? Why?

iii. How close does your regression coefficient come to the value you expect? Is the
value you calculated for the sum of the causal effect and the selection bias terms
within the confidence interval for the estimated coefficient?

(k) Now, regress y on college, but only in the sample where wv2 == 1. As the book
suggests, this should be the sum of a causal effect and a selection bias term. How do
the results change, and why?

(1) Lastly, regress y on college without restricting the sample or including any other
controls. What coefficient do you get, and why?



