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The Logit Model: Binary Choice Edition

A standard latent variable model of a binary outcome, y :

y∗ = X ′β + ε and y = 1 [y∗ > 0]

For any symmetric distribution of ε, we can write:

Pr [y = 1|X ] = Pr [y∗ > 0|X ]

= Pr [ε > −X ′β|X ]

= 1− F (−X ′β)

= F (X ′β)

When ε has a standard logistic distribution:

F (X ′β) =
eX
′β

1 + eX ′β
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The Logit Model: Binary Choice Edition

Translates into the likelihood function:

L (β) = [F (X ′β)]
y

[1− F (X ′β)]
1−y

` (β) = y ln [F (X ′β)] + (1− y) ln [1− F (X ′β)]

Possible interpretations:

• X indicates the characteristics of people/units

• X indicates the difference(s) in attributes between alternatives

Logit model can be extended to cases with J > 2 outcomes
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The Additive Random Utility Model

In an additive random utility model, realized utility is the sum of the
modeled component (“representative utility”) and a random component:

Unj = Vnj + εnj

where Vnj is often assumed to be X ′β, εnj are IID

We assume that the highest utility alternative is chosen:

Pnj = Pr [Vnj + εnj > Vnk + εnk∀k 6= j ]

= Pr [εnj > Vnk − Vnj + εnk∀k 6= j ]

. . .

=
eVnj∑
k∈J e

Vnk

whenever εnj is EV1-distributed
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The Additive Random Utility Model

Translates into the log-likelihood function:

`n (θ) =
∑
j

znj · ln (Pnj)

where

• znj is an indicator equal to one if n chooses option j

• Pnj is the probability of choosing alternative j
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Representative Utility

A standard formulation of utility: Vnj = X ′β

• Example 1: choosing a vacation destination

I Utility is defined over attributes: Beach? Pool? Nightlife? Spa?

I When all utility parameters reflect valuation of specific attributes,
assumption of linear representative utility is essentially costless

• Example 2: deciding how to get to work

I Utility is defined over money, time, plus other attributes

I Assumption of (approximately) linear utility over some amounts of
money (or time) is standard in some circles, less accepted in others

I Including price as one of the attributes allows the researcher to
put dollar values on the utility derived from other attributes
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Representative Utility

Linear representative utility is not a requirement

• Example 3: deciding how to get to work, revisited

I Train and McFadden (1978) assume V = (1− β) lnG + β ln L

I G = w · h is consumption of a numeraire good

I L = 24− h is leisure time

I Commuting by car, bus takes time and costs money; consumers
choose optimal amount of labor conditional on mode of transport

I Implies: Vnj ∝ −
[(
cj/w

β
)

+ w 1−βtj
]

• Example 4: choosing between risky lotteries

I Von Gaudecker et al (2011) assume Vnj takes CARA form
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The Scale Parameter

Utility of alternative j ∈ J is given by:

Unj = Vnj + εnj

When εnj is EV1-distributed, the choice probabilities are given by:

Pnj = Pr [εnj > Vnk − Vnj + εnk∀k 6= j ]

=
eVnj∑
k∈J e

Vnk

Why? Magical algebra. Critically, the CDF of the standard EV1 is

F (εnj)) = e−e
−εnj

The difference of two EV1-distributed variables has a logistic distribution

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 8



The Scale Parameter

Utility of alternative j ∈ J is given by:

Unj = Vnj + εnj

When εnj is EV1-distributed, the choice probabilities are given by:

Pnj = Pr [εnj > Vnk − Vnj + εnk∀k 6= j ]

=
eVnj∑
k∈J e

Vnk

Why? Magical algebra. Critically, the CDF of the standard EV1 is

F (εnj)) = e−e
−εnj

The difference of two EV1-distributed variables has a logistic distribution

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 8



The Scale Parameter

Variance of random component of utility (relative to magnitude/scale of
representative utility) indicates importance of noise in decision-making

• Variance of a standard EV1-distributed variable: π2/6

I Obviously no reason to assume this is variance of εnj

• A more “true” model of utility:

Unj = Vnj/σε + εnj

where variance of εnj is normalized to π2/6

• With linear representative utility linear, β, σ not separately identified:

Unj = X ′β/σε + εnj ⇒ Pnj =
eX
′
nj (β/σ)∑

k∈J e
X ′nk (β/σ)

Does this matter? Utility is robust to positive, affine transformations.

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 9



The Scale Parameter

Variance of random component of utility (relative to magnitude/scale of
representative utility) indicates importance of noise in decision-making

• Variance of a standard EV1-distributed variable: π2/6

I Obviously no reason to assume this is variance of εnj

• A more “true” model of utility:

Unj = Vnj/σε + εnj

where variance of εnj is normalized to π2/6

• With linear representative utility linear, β, σ not separately identified:

Unj = X ′β/σε + εnj ⇒ Pnj =
eX
′
nj (β/σ)∑

k∈J e
X ′nk (β/σ)

Does this matter? Utility is robust to positive, affine transformations.

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 9



The Scale Parameter

Variance of random component of utility (relative to magnitude/scale of
representative utility) indicates importance of noise in decision-making

• Variance of a standard EV1-distributed variable: π2/6

I Obviously no reason to assume this is variance of εnj

• A more “true” model of utility:

Unj = Vnj/σε + εnj

where variance of εnj is normalized to π2/6

• With linear representative utility linear, β, σ not separately identified:

Unj = X ′β/σε + εnj ⇒ Pnj =
eX
′
nj (β/σ)∑

k∈J e
X ′nk (β/σ)

Does this matter? Utility is robust to positive, affine transformations.

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 9



The Scale Parameter

Magnitude of structural parameters is relative to random error term

• True interpretation of estimated parameters is β/σ

Caveat 1: we may wish to estimate differences in error variance

• Example: literacy/ability, attribute salience

Caveat 2: variance of random component of utility is (typically) identified
when representative utility is non-linear (e.g. labor/leisure tradeoffs)

• “Identification based on functional form assumptions”

I Are your simplifying assumptions driving your results?

I Are your results robust to other specifications?

Likelihood of choosing “randomly” is often of inherent interest

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 10



The Scale Parameter

Magnitude of structural parameters is relative to random error term

• True interpretation of estimated parameters is β/σ

Caveat 1: we may wish to estimate differences in error variance

• Example: literacy/ability, attribute salience

Caveat 2: variance of random component of utility is (typically) identified
when representative utility is non-linear (e.g. labor/leisure tradeoffs)

• “Identification based on functional form assumptions”

I Are your simplifying assumptions driving your results?

I Are your results robust to other specifications?

Likelihood of choosing “randomly” is often of inherent interest

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 10



The Scale Parameter

Magnitude of structural parameters is relative to random error term

• True interpretation of estimated parameters is β/σ

Caveat 1: we may wish to estimate differences in error variance

• Example: literacy/ability, attribute salience

Caveat 2: variance of random component of utility is (typically) identified
when representative utility is non-linear (e.g. labor/leisure tradeoffs)

• “Identification based on functional form assumptions”

I Are your simplifying assumptions driving your results?

I Are your results robust to other specifications?

Likelihood of choosing “randomly” is often of inherent interest

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 10



The Scale Parameter

Magnitude of structural parameters is relative to random error term

• True interpretation of estimated parameters is β/σ

Caveat 1: we may wish to estimate differences in error variance

• Example: literacy/ability, attribute salience

Caveat 2: variance of random component of utility is (typically) identified
when representative utility is non-linear (e.g. labor/leisure tradeoffs)

• “Identification based on functional form assumptions”

I Are your simplifying assumptions driving your results?

I Are your results robust to other specifications?

Likelihood of choosing “randomly” is often of inherent interest

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 10



Estimation in Stata

Example: choosing a vacation destination

Destination Cost Travel Time Beach? Warm?

Annapolis $1000 1 hour Yes No

Bahamas $8000 4 hours Yes Yes

Costa Rica $4000 8 hours Yes Yes

Durango $2000 6 hours No Yes

You observe a data set on the destination choices of 1000 people

• Need to observe the full menu of choices
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Estimation in Stata

Specify the utility function:

Unj = −αPricenj −βTravelTimej +γWarmj + δBeachj +λWarm×Beachj

Preference parameters are NOT heterogeneous across individuals:

• Tastes can only vary with observable characteristics

I Pricenj depends on number of people traveling

I Could also interact price with household income

ECON 626: Applied Microeconomics Lecture 12: Conditional Logit, Slide 12



Estimation in Stata

Estimation in Stata uses asclogit command

• Data set needs to be at the alternative level

asclogit chosen price time warm beach warmxbeach, ///

case(id) alternative(destination) noconstant altwise

where:

• case() indicates the decision situation

• alternative() indicates the alternative (a unique # within case)

• noconstant means do not include alternative-specific constants

• altwise means drop alternatives, not entire decision situations
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The Independence of Irrelevant Alternatives

The relative odds of choosing alternative j over alternative i :

Pnj

Pni
=

eVnj/
∑

k∈J e
Vnk

eVni/
∑

k∈J e
Vnk

=
eVnj

eVni

= eVnj−Vni

Odds do not depend on the other elements of the choice set

• Luce (1959) argues that IIA is critical to correct choice probabilities
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Of Red Buses and Blue Buses

Suppose a commuter faces a choice between driving, taking the (red) bus

• At the outset, she is two times more likely to drive: Pcar/Prb = 2

• (So, Pcar = 2
3 and Prb = 1

3 )

Now suppose that her local transit authority introduces a third option —
a blue bus — that is exactly identical to the red bus in every way

• By construction: Vrb = Vbb, so Prb = Pbb

How should the probability of taking the red bus change?

• Common sense prediction: Pcar = 2
3 and Prb = Pbb = 1

6

• Logit prediction: Pcar = 1
2 and Prb = Pbb = 1

4

More flexible model can accommodate different substitution patterns
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Mixed Logit

In a mixed logit model, choice probabilities takes the form:

Pnj =

∫ (
eVnj (β)∑
k∈J e

Vnk (β)

)
f (β) dβ

where f (β) is the density of the (unobserved) utility parameter, β

Three examples:

• Random component of utility correlated across alternatives
(e.g. correlation between likelihood of choosing red vs. blue bus)

• Random coefficients

• Latent class (i.e. finite mixture) models
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Random Coefficients Logit

Utility parameters vary across individuals:

Unj = X ′njβn + εnj

where β ∼ N
(
µ, σ2

)

Choice probabilities are given by:

Pnj =

∫ (
eX
′
njβ∑

k∈J e
X ′njβ

)
φ
(
β|µ, σ2

)
dβ

The choice probabilities don’t depend on β

• µ, σ are the parameters to be estimated

• Assumption of normality can be replace with any other distribution
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Mixed Logit Estimation

Estimation of mixed logit is done via simulated log likelihood

SLLn =
∑
j

znj · ln
(
P̃nj

)
where P̃nj is averaged over R random draws from f (β)

P̃nj =
1

R

R∑
r=1

eX
′
njβ

r∑
k∈J e

X ′njβ
r

Simulation proceeds in three intuitive steps:

• Take R draws from (say) a standard normal

I Any distribution is possible (e.g. multivariate normal w/ correlation)

• At each step, scale using current values of parameters (e.g. µ, σ)

• Calculate simulated log-likelihood
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Mixed Logit Estimation in Stata

Estimation in Stata uses mixlogit command

• Same data structure as conditional logit

mixlogit chosen warm beach warmxbeach, ///

group(id) rand(price time) ln(0)

Results and interpretation:

• rand() indicates variables associated with random coefficients

• ln() indicates that the last # are log-normally distributed

• Stata reports means, standard deviations, and associated standard
errors for all variables associated with random coefficients
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