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Lecture 11:

Maximum Likelihood Estimation

Professors: Pamela Jakiela and Owen Ozier



Maximum Likelihood: Motivation

So far, we’ve been thinking about average treatment effects, but the ATE
may or may not be the main quantity of interest research-wise

• Imperfect compliance ⇒ LATE/TOT estimates

• Outcomes may be censored (as in a tobit model)

I OLS estimates of the treatment effect are inconsistent

• Treatments may impact specific parameters in a structural or
theoretical model; may want to know how much parameters change

I Theory can provide a framework for estimating treatment effects

ML approaches can help to translate treatment effects into “economics”
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Maximum Likelihood: Overview

In ML estimation, the data-generating process is the theoretical model

• First key decision: what is your theoretical model?

I Examples: utility function, production function, hazard model

• Second key decision: continuous vs. discrete outcome variable

I Censoring, extensions lead to intermediate cases

• Third key decision: structure of the error term

I Typically additive, but distribution matters
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OLS in a Maximum Likelihood Framework

Consider a linear model:

yi = X ′i β + εi where εi |Xi ∼ N (0, σ2)

⇒ yi ∼ N (X ′i β, σ
2)

The normal error term characterizes the distribution of y :

f (y |X ; θ) =
1

σ
√

2π
· e
−
[(

y−X ′β
σ

)2
/2

]

=
1

σ
φ

(
y − X ′β

σ

)
= L(θ)

where θ = (β, σ)
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OLS in a Maximum Likelihood Framework

Knowing f (y |X ; θ), we can write down the log-likelihood function for θ:

` (θ) =
∑
i

ln [f (yi |Xi ; θ)]

=
∑
i

ln

[
1

σ
φ

(
yi − X ′i β

σ

)]
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ML Estimation in Stata

Estimating β̂ in Stata:

capture program drop myols

program myols

args lnf beta sigma

quietly replace ‘lnf’=log((1/‘sigma’)*normalden(($ML_y1-‘beta’)/‘sigma’))

end

ml model lf myols (beta: y = x) /sigma

ml maximize

where $ML y1 is the dependent variable

• By default, Stata imposes a linear structure on independent variable
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Tobit Estimation

Suppose we only observe y∗i if y∗i > 0

Ci =

{
0 if y∗i > 0

1 if y∗i ≤ 0

So, we observe: (Xi , y
∗
i · (1− Ci ) ,Ci ) for each observations i

With censoring of y∗i at 0, the likelihood function takes the form:

Li (θ) = [f (y∗i |Xi ; θ)]1−Ci · [Pr (y∗i ≤ 0|Xi ; θ)]Ci
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Tobit Estimation

Since εi = y∗i − X ′i β, we know that:

Pr (y∗i ≤ 0|Xi ; θ) = Pr (εi < −X ′i β)

= Φ

(
−X ′i β

σ

)

= 1− Φ

(
X ′i β

σ

)

We can re-write the likelihood as:

Li (θ) =

[
1

σ
φ

(
y − X ′β

σ

)]1−Ci

·
[

1− Φ

(
X ′i β

σ

)]Ci
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Tobit ML Estimation in Stata

Modifying the Stata likelihood function to adjust for censoring:

capture program drop mytobit

program mytobit

args lnf beta sigma

quietly replace ‘lnf’=log((1/‘sigma’)*normalden(($ML_y1-‘beta’)/‘sigma’))

quietly replace ‘lnf’= log(1-normal(‘beta’/‘sigma’)) if $ML_y1==0

end

ml model lf myols (beta: ystar = x) /sigma

ml maximize
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Why Use Maximum Likelihood?

Many economic applications start from a non-linear model of an
individual decision rule some other underlying structural process

• Impacts on preferences (e.g. risk, time)

• Duration of unemployment spells

• CES production, utility functions

Maximum likelihood in Stata vs. Matlab:

• Stata is fast and (relatively) easy, if it converges

• No restrictions on the functional form of the likelihood in Matlab

• Broader range of optimization options in Matlab
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Maximum Likelihood Estimation

Let yi be the observed decision in choice situation i for i = 1, . . . , I

yi = g (xi ; θ) + εi

where xi denotes the exogenous parameters of the situation (e.g. price),
θ denotes the preference/structural parameters, and εi ∼ N (0, σs)

• Space of outcomes/choices is continuous (i.e. not discrete)

• g (x ; θ) + εj is the structural model (e.g. demand function)

I Often derived by solving for utility-maximizing choice

Because εi ∼ N (0, σs), we know that yi − g (xi ; θ)︸ ︷︷ ︸
εi

∼ N (0, σ2)

⇒ yi ∼ N (g (xi ; θ) , σ2)
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Maximum Likelihood Estimation: CRRA Example

Assume utility over income takes the constant relative risk aversion
(CRRA) form given risk aversion parameter ρ > 0:

u(x) =
x1−ρ

1− ρ

Agent chooses an amount, z ∈ [0, b], to invest in a risky security that
yields payoff of 0 with probability 1

2 and payoff of λz with probability 1
2

maxz∈[0,b]
1

2(1− ρ)

[
(b − z)1−ρ + (b + λz)1−ρ

]
The optimal interior allocation to the risky security is given by

z∗ (b, λ) = b

(
λ1/ρ − 1

λ1/ρ + λ

)
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Maximum Likelihood Estimation: CRRA Example

People implement their choices with error:

zi = z∗ (b, λ) + εi where εi |b, λ ∼ N (0, σs)

The normal error term characterizes the distribution of y :

f (zi |b, λ; θ) =
1

σ
√

2π
· e
−
[(

y−z∗i (b,λ)

σ

)2

/2

]

=
1

σ
φ

(
y − z∗i (b, λ)

σ

)
where θ = (ρ, σ)
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Maximum Likelihood Estimation: CRRA Example

We only observe z∗i if z∗i < b

Ci =

{
0 if z∗i < b

1 if z∗i ≥ b

With censoring, the likelihood function takes the form:

Li (θ) = [f (zi |b, λ; θ)]1−Ci · [Pr (zi ≥ b; θ)]Ci

Log likelihood takes the form:

`i (θ) = (1− Ci ) ln [f (zi |b, λ; θ)] + Ci ln [Pr (zi ≥ b|θ)]
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Maximum Likelihood Estimation: CRRA Example

Because we know that εi |b, λ ∼ N (0, σs), we can calculate:

Pr (zi ≥ b|θ) = Pr (z∗i (b, λ) + εi ≥ b|θ)

= 1− Pr (εi ≤ b − z∗i (b, λ)|θ)

= 1− Φ

(
b − z∗i (b, λ)

σ

)

We can re-write the log likelihood as:

`i (θ) = (1−Ci ) ln

[
1

σ
φ

(
y − z∗i (b, λ)

σ

)]
+Ci ln

[
1− Φ

(
b − z∗i (b, λ)

σ

)]
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Maximum Likelihood Estimation: CRRA Example

Stata program for ML estimation in a non-linear framework:

capture program drop mymodel

program mymodel

args lnf rho sigma

tempvar ratio res

quietly gen double ‘ratio’ = $ML_y2*(($ML_y3^(1/‘rho’) - 1)/($ML_y3^(1/‘rho’) + $ML_y3))

quietly gen double ‘res’ = $ML_y1 - ‘ratio’

quietly replace ‘lnf’ = ln((1/‘sigma’)*normalden((‘res’)/‘sigma’))

quietly replace ‘lnf’= ln(1-normal(($ML_y2-‘ratio’)/‘sigma’)) if $ML_y4==1

end

ml model lf mymodel (rho: investment budget return censor = ) (sigma: )

ml maximize
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