ECON 626: Applied Microeconomics

Lecture 10:

Attrition

Professors: Pamela Jakiela and Owen Ozier



Attrition as Selection Bias

Angrist and Pishke (2008):

“The goal of most empirical economic research is to overcome selection
bias, and therefore to say something about the causal effect...”

Motivation 1:

® What do we do when an RCT should identify the effect of interest,
but there is attrition from the sample (i.e. missing endline data)?

® What if that attrition is differential across arms?
Motivation 2:
® What can we do when outcomes (e.g. profits) are not always

observed and are more likely to be observed in treatment group?
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Attrition as Selection Bias: An Example

No attrition: = 0.9684

Control

Treatment

UMD Economics 626: Applied Microeconomics Lecture 10: Attrition, Slide 3



Random Attrition Is OK

Attrition at random in control group: B =0.9792

15

Attritors

I Non-attritors

Control

Treatment
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Non-Random Attrition Is a Problem

Control

Treatment

Non-random attrition in control group: B =0.6211

15

Attritors

I Non-attritors
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Non-Random Attrition Is a Problem

We want to know if business training increases micro-enterprise profits

® We only observe profits (Y) for business that still exist (Z > 0)
The true model of profits is given by:

Y*=8D+6&+U
Z" =D+ 56+ V
Y =1[Z* > 0]

Standard approach to estimating treatment effects yields:

Birr = E[Y|D = 1] — E[Y|D = 0]
=B+ E[UD=1,V>-6h—-9]-E[UD=0,V > -]

selection bias if U and V are not independent
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Approaches to Selection Bias from Attrition

Approach 1: implement Heckman two-step correction for selection

® Drawback: requires an instrument for selection into sample

Approach 2: implement Manski bounds (Horowitz and Manski 2000)
® Makes no assumptions besides bounded support for the outcome
> What is the worst-case scenario for missing observations?
® Replaces missing values with maximum or minimum in the support
® Drawback: results may be uninformative (i.e. Cls may be wide)

» Manksi bounds still serve as a useful benchmark

> May work well with certain (e.g. binary) outcomes
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Manski Upper Bound: Attrition from Control Group

Non-random attrition, imputed with minimum: = 1.1695

Attritors
~ I Non-attritors
[ imputed values

Control

Treatment
1
|
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Manski Lower Bound: Attrition from Control Group

Non-random attrition, imputed with maximum:  =-0.2860

Attritors
o | I Non-attritors
[ imputed values

Control

Treatment
1
|
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Bounds Under Monotonicity

Approach 3: Lee (2009) derives bounds under monotonicity assumption

”

“treatment... can only affect sample selection in ‘one direction’

Monotonicity allows us to ignore those who attrit from both arms

® Bounded support not required (not imputing missing values)
® Throw away highest/lowest values from less-attritted study arm

® |dentifies the average treatment effect for never-attriters
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Bounds Under Monotonicity

Each individual characterized by (Y7, Y5, 57, 5¢):
® Y, Yy are potential outcomes
® S, S5 are potential outcomes for attrition
> Observed in sample when S = S/D + S55(1-D) =1
> Never-attritors: S; = S5 =1
» Marginal types: S =1 and S§ =0

» This assumes treatment reduces attrition, but it can go either way
(but not both ways as the same time under monotonicity)
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Bounds Under Monotonicity

Recall our simple example:

E[Y|D =0] = E[Y*|D =0,Z" > 0]
:51+E[U|D = 0, vV > —52]

E[Y|D: 1] = E[Y*‘D: 1,Z* > 0]
:51+6+E[U|D:1,V2—52—’y]

We need to know E[U|D =1,V > —§,] to identify treatment effect 8

® Notice that those with V > —§, are never-attritors

® Those with —d, — v < V < —d; only attrit from control group
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Bounds Under Monotonicity

E[Y|D =1,Z* > 0] is a weighted average:

=(1-p)E[Y'|ID=1,V>-&]+pE[Y|D=1,-8 -7 <V < —3)]

outcome among never-attrittors outcome among marginal types
where p = Pr[—d —y < V < —02]/Pr[V > =62 — 7]
Throwing out p observations allows us to bound treatment effect:

“We cannot identify which observations are inframarginal
and which are marginal. But the ‘worst-case’ scenario is that
the smallest p values of Y belong to the marginal group.
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Lee Bounds in Theory

LB=E[YID=1,S=1Y <yi_p]— E[Y|D=0,5 = 1]
UP=E[Y|ID=1,S=1Y > y,] — E[Y|D=0,5 = 1]
¥q = G '(q) where G is the CDF of Y conditional on D =1,5 =1

_ Pr[S=1|D=1]— Pr[S=1|D = 0]
Pe = Pr[S =1|D = 1]
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Lee (Upper) Bounds in Practice

Non-random attrition, trimming low values in treatment group: B = 0.9632

25
|
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N < included observations
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Lee (Lower) Bounds in Practice

Non-random attrition, trimming low values in treatment group: B = 0.2763
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Lee Bounds in Practice

Table IV: Bounds on Treatment Effects for In(wage) in Week 208 using Trimming Procedure

Control

Treatment

(i) Number of Observations
(1) Proportion Non-missing
(ii1) Mean In(wage) for employed
(1iv) Number of Observations
(v) Proportion Non-missing
(vi) Mean In(wage) for employed

p=[W-}(v)

(vii) pth quantile
(viii) Trimmed Mean: E[Y[Y>y,]

(ix) (1-p)th quantile
(x)  Trimmed Mean: E[Y[Y<y,]

UMD Economics 626: Applied Microeconomics

3599  Control Standard Error
0.566 Std. Error
1.997
Treatment UB Standard Error
5546 Component 1
0.607 Component 2
2.031 Component 3
Total
0.068
1.636  Treatment LB Standard Error
2.090 Component 1
Component 2
2.768 Component 3
1.978 Total
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0.0082

0.0053
0.0021
0.0083
0.0100

0.0058
0.0037
0.0144
0.0159



Lee Bounds in Practice: Confidence Intervals

For the entire interval, you can do better than:

ALB _ 196—AUB+196 ]
ST P

Instead (Imbens and Manski 2004), use:

ALB _ C_‘JLBAUB+CA]
{ V' Vn

where C, satisfies:

(C 4 yp BB ) — & (~C,) = 0.95

max(0.5,TUB)
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Lee Bounds in Practice: Covariates

Estimating Lee bounds within bins narrows bounds

® The tightened bounds are averages over X = x bins
® |TT effects are also weighted across bins

® If attrition is concentrated in specific cells, we can limit bounding
exercise to the component of average where attrition actually occurs
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Lee Bounds in Practice: leebounds in Stata

Title

leebounds — Lee (2009) treatment-effect bounds

Syntax
leebounds depvar treatvar [if] [in] [veight] [, options]
depvar specifies the outceme variable.

treatvar specifies a binary variable, indicating receipt of treatment., ESTANating the effect of treatvar on depvar is subject of the
empirical analysis. The (alphanumerically) larger value of treatvar is assumed to indicate treatment.

eptions Description

select (varnzms) selection indicator

tight (varlist) covariates for tightened bounds

Cieffect compute confidence interval for treatment effect

Voe (analytic|bootstrap) compute analytic or bootstrapped standard errors; default is vee(analytic)
level(#) set confidence level; default is level(95)

pweights, fweights, and iweights are allowed; see weight. Observations with negative weight are skipped for any weight type.
bootstrap is allowed; see prefix.

Deseription

computes bounds for samples with nonrandom sample selection or attrition, as proposed by les (2009). The
lower and upper bound correspond TO SXCreme asSumpTions about The missing Information that are consistent with the observed data. As
opposed to parametric approaches to correcting for sample-selection bias, such as the classical Heckman (1979) estimator, Lee (2009)
bounds rest on very few assumptions, that is, random assignment Of treatment and monotonicity. Monotonicity means that the Treatment
status affects selection in just onme direction. That is, receiving a treatment makes selection either more or less likely for any
observacion. In technical terms, the approach rests on a trimming procedure. Either from below or from above, the group (Creatment,
control) that suffers less from sample attrition is trimmed at the guantile of the outcome variable that corresponds to the share of
excess ocbservations in this group. Calculating group differentials in mean outcome yields the lower and the upper bound, respectively,
for the treatment effect depending on whether trimming is from below or above.
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