
ECON 626: Applied Microeconomics

Lecture 10:

Attrition

Professors: Pamela Jakiela and Owen Ozier



Attrition as Selection Bias

Angrist and Pishke (2008):

“The goal of most empirical economic research is to overcome selection
bias, and therefore to say something about the causal effect...”

Motivation 1:

• What do we do when an RCT should identify the effect of interest,
but there is attrition from the sample (i.e. missing endline data)?

• What if that attrition is differential across arms?

Motivation 2:

• What can we do when outcomes (e.g. profits) are not always
observed and are more likely to be observed in treatment group?
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Attrition as Selection Bias: An Example
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No attrition:  β = 0.9684
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Random Attrition Is OK
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Attrition at random in control group:  β = 0.9792
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Non-Random Attrition Is a Problem
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Non-random attrition in control group:  β = 0.6211
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Non-Random Attrition Is a Problem

We want to know if business training increases micro-enterprise profits

• We only observe profits (Y ) for business that still exist (Z ≥ 0)

The true model of profits is given by:

Y ∗ = βD + δ1 + U

Z∗ = γD + δ2 + V

Y = 1[Z∗ ≥ 0]

Standard approach to estimating treatment effects yields:

β̂ITT = E [Y |D = 1]− E [Y |D = 0]

= β + E [U|D = 1,V ≥ −δ2 − γ]− E [U|D = 0,V ≥ −δ2]︸ ︷︷ ︸
selection bias if U and V are not independent
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Approaches to Selection Bias from Attrition

Approach 1: implement Heckman two-step correction for selection

• Drawback: requires an instrument for selection into sample

Approach 2: implement Manski bounds (Horowitz and Manski 2000)

• Makes no assumptions besides bounded support for the outcome

I What is the worst-case scenario for missing observations?

• Replaces missing values with maximum or minimum in the support

• Drawback: results may be uninformative (i.e. CIs may be wide)

I Manksi bounds still serve as a useful benchmark

I May work well with certain (e.g. binary) outcomes
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Manski Upper Bound: Attrition from Control Group

0
.0

5
.1

.1
5

.2
.2

5

C
on

tro
l

 

-5 0 5

Attritors

Non-attritors

Imputed values

0
.0

5
.1

.1
5

.2

Tr
ea

tm
en

t
 

-5 0 5

Non-random attrition, imputed with minimum:  β = 1.1695
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Manski Lower Bound: Attrition from Control Group
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Non-random attrition, imputed with maximum:  β = -0.2860
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Bounds Under Monotonicity

Approach 3: Lee (2009) derives bounds under monotonicity assumption

“treatment... can only affect sample selection in ‘one direction’ ”

Monotonicity allows us to ignore those who attrit from both arms

• Bounded support not required (not imputing missing values)

• Throw away highest/lowest values from less-attritted study arm

• Identifies the average treatment effect for never-attriters
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Bounds Under Monotonicity

Each individual characterized by (Y ∗
1 ,Y

∗
0 ,S

∗
1 ,S

∗
0 ):

• Y ∗
1 ,Y

∗
0 are potential outcomes

• S∗
1 ,S

∗
0 are potential outcomes for attrition

I Observed in sample when S = S∗
1 D + S∗

0 (1− D) = 1

I Never-attritors: S∗
1 = S∗

0 = 1

I Marginal types: S∗
1 = 1 and S∗

0 = 0

I This assumes treatment reduces attrition, but it can go either way
(but not both ways as the same time under monotonicity)
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Bounds Under Monotonicity

Recall our simple example:

E [Y |D = 0] = E [Y ∗|D = 0,Z∗ ≥ 0]

= δ1 + E [U|D = 0,V ≥ −δ2]

E [Y |D = 1] = E [Y ∗|D = 1,Z∗ ≥ 0]

= δ1 + β + E [U|D = 1,V ≥ −δ2 − γ]

We need to know E [U|D = 1,V ≥ −δ2] to identify treatment effect β

• Notice that those with V ≥ −δ2 are never-attritors

• Those with −δ2 − γ ≤ V < −δ2 only attrit from control group
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Bounds Under Monotonicity

E [Y |D = 1,Z∗ ≥ 0] is a weighted average:

= (1− p)E [Y ∗|D = 1,V ≥ −δ2]︸ ︷︷ ︸
outcome among never-attrittors

+p E [Y ∗|D = 1,−δ2 − γ ≤ V < −δ2]︸ ︷︷ ︸
outcome among marginal types

where p = Pr [−δ2 − γ ≤ V < −δ2]/Pr [V ≥ −δ2 − γ]

Throwing out p observations allows us to bound treatment effect:

“We cannot identify which observations are inframarginal
and which are marginal. But the ‘worst-case’ scenario is that

the smallest p values of Y belong to the marginal group.

UMD Economics 626: Applied Microeconomics Lecture 10: Attrition, Slide 13



Lee Bounds in Theory

LB = E [Y |D = 1,S = 1,Y ≤ y1−p0 ]− E [Y |D = 0,S = 1]

UP = E [Y |D = 1,S = 1,Y ≥ yp0 ]− E [Y |D = 0, S = 1]

yq = G−1(q) where G is the CDF of Y conditional on D = 1,S = 1

po =
Pr [S = 1|D = 1]− Pr [S = 1|D = 0]

Pr [S = 1|D = 1]

UMD Economics 626: Applied Microeconomics Lecture 10: Attrition, Slide 14



Lee (Upper) Bounds in Practice
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Trimmed observations

Included observations

Non-random attrition, trimming low values in treatment group:  β = 0.9632
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Lee (Lower) Bounds in Practice
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Trimmed observations

Included observations

Non-random attrition, trimming low values in treatment group:  β = 0.2763
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Lee Bounds in Practice
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Lee Bounds in Practice: Confidence Intervals

For the entire interval, you can do better than:[
∆̂LB − 1.96

σ̂LB√
n
, ∆̂UB + 1.96

σ̂UB√
n

]
Instead (Imbens and Manski 2004), use:[

∆̂LB − C̄n
σ̂LB√
n
, ∆̂UB + C̄n

σ̂UB√
n

]
where C̄n satisfies:

Φ

(
C̄n +

√
n

∆̂UB − ∆̂LB

max(σ̂LB , σ̂UB)

)
− Φ

(
−C̄n

)
= 0.95

UMD Economics 626: Applied Microeconomics Lecture 10: Attrition, Slide 18



Lee Bounds in Practice: Covariates

Estimating Lee bounds within bins narrows bounds

• The tightened bounds are averages over X = x bins

• ITT effects are also weighted across bins

• If attrition is concentrated in specific cells, we can limit bounding
exercise to the component of average where attrition actually occurs
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Lee Bounds in Practice: leebounds in Stata
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