
ECON 626: Applied Microeconomics

Lecture 9:

Multiple Test Corrections

Professors: Pamela Jakiela and Owen Ozier



Multiple Hypothesis Testing: The Problem

Consider testing 100 true null hypotheses — how many will rejected?

Number of Tests

1 2 k

Test size 0.05 0.05 0.05

No rejections 0.95 0.952 0.95k

Any rejections 0.05 1 - 0.952 1 - 0.95k
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Multiple Hypothesis Testing: The Problem

Consider testing 100 true null hypotheses — how many will rejected?

Number of Tests

1 2 k

Test size 0.05 0.05 0.05

No rejections 0.95 0.9025 0.95k

Any rejections 0.05 0.0975 1 - 0.95k
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Multiple Hypothesis Testing: The Problem
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Number of (independent) hypotheses tested

Under the null, probability of rejecting at least on hypothesis
increases rapidly with number of independent hypothesis tests
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Multiple Hypothesis Testing: The Problem

How can we (credibly) test multiple hypotheses?

• What sort of ninny would test 100 hypotheses?

• Valid reasons for testing many hypotheses:

I Studies often have 2 or 3 treatment arms (and rightly so!)

I Difficult to predict which outcomes will be affected

I Particularly true for secondary hypotheses/treatment effects

I Different measures of the same outcome often available

I Heterogeneity in treatment effects (across sub-samples)
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Multiple Hypothesis Testing: The Problem

Published empirical papers include a lot of hypothesis tests!

Source: Young (2019)
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Bonferroni Corrections

Most conservative approach is the Bonferroni method∗

• Problem: you wish to test hypotheses H1, ...Hk using a test size of α

• Solution (of sorts): use a test size of α/k instead

I Family-wise error rate (FWER): probability of rejecting a true null

I Bonferroni correction holds FWER below α

I Bonferroni corrections are too conservative:

I FWER ≈ 0.04877 when number of independent tests is large

I Bonferroni corrections can be extremely conservative when tests are
not independent (consider example of perfectly correlated tests)

Good news: if you are testing k hypotheses and a Bonferroni correction
works (i.e. your results hold up), you don’t need the rest of this lecture

∗Purportedly developed by Olive Jean Dunn and not, ahem, Carlo Emilio Bonferroni
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Bonferroni Corrections

Number of Tests

1 k

Test size (per test) 0.05 α/k

1 - (single) test size 0.95 1 − α/k

No rejections 0.95 (1 − α/k)k

Any rejections 0.05 1 − (1 − α/k)k
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Bonferroni Corrections

Number of Tests

1 2 10

Test size (per test) 0.05 0.025 0.005

1 - (single) test size 0.95 1 − α/k

No rejections 0.95 (1 − α/k)k

Any rejections 0.05 1 − (1 − α/k)k
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Bonferroni Corrections

Number of Tests

1 2 10

Test size (per test) 0.05 0.025 0.005

1 - (single) test size 0.95 0.975 0.995

No rejections 0.95 (1 − α/k)k

Any rejections 0.05 1 − (1 − α/k)k
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Bonferroni Corrections

Number of Tests

1 2 10

Test size (per test) 0.05 0.025 0.005

1 - (single) test size 0.95 0.975 0.995

No rejections 0.95 0.950625 0.951110

Any rejections 0.05 1 − (1 − α/k)k
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Bonferroni Corrections

Number of Tests

1 2 10

Test size (per test) 0.05 0.025 0.005

1 - (single) test size 0.95 0.975 0.995

No rejections 0.95 0.950625 0.951110

Any rejections 0.05 0.049375 0.048890

UMD Economics 626: Applied Microeconomics Lecture 9: Multiple Test Corrections, Slide 14



Bonferroni Corrections

Most conservative approach is the Bonferroni method∗

• Problem: you wish to test hypotheses H1, ...Hk using a test size of α

• Solution (of sorts): use a test size of α/k instead

I Family-wise error rate (FWER): probability of rejecting a false null

I Bonferroni correction holds FWER below α

I Bonferroni corrections are too conservative:

I FWER ≈ 0.04877 when number of independent tests is large

I Bonferroni corrections can be extremely conservative when tests are
not independent (consider example of perfectly correlated tests)

Good news: if you are testing k hypotheses and a Bonferroni correction
works (i.e. your results hold up), you don’t need the rest of this lecture

∗Purportedly developed by Olive Jean Dunn and not, ahem, Carlo Emilio Bonferroni
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Stepdown Methods

Holm (1979) proposes a less conservative stepdown method:

0. Order k p-values from smallest to largest, p(1), p(2), ..p(k)

1a. If p(1) > α/k , stop. Fail to reject all hypotheses

1b. Reject H(1) if p(1) < α/k . Proceed to Step 2.

2a. If p(2) > α/(k − 1), stop. Fail to reject all remaining hypotheses.

2b. Reject H(2) if p(2) < α/(k − 1). Proceed to Step 3.
...

j. Repeat as needed until you stop rejecting hypotheses because
p(j) > α/(k − (j − 1)) or all k hypotheses have been rejected

More good news: Romano & Wolf (JASA, 2005) state “This procedures
holds under arbitrary dependence on the joint distribution of p-values.”
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Stepdown Methods: Holm vs. Bonferroni

p-value Bonferroni Holm

0.010 0.050 0.050

0.010 0.050 0.040

0.015 0.075 0.045

0.050 0.250 0.100

0.100 0.500 0.100

Blue indicates hypotheses that would not be rejected using a test size of α = 0.05
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Resampling-Based Stepdown Methods

More complicated/powerful bootstrap-based stepdown methods exist

• Examples: Westfall & Young (1993), Romano & Wolf (2005)

• These procedures exploit additional assumptions to increase power
(so you don’t need them if simpler methods “work” in your setting)

• They are also more computationally-intensive, often including
phrases like “efficient computation” or “computationally feasible”

• Approaches use some form of stepdown structure

I At each step, “accept”/reject decisions use empirical distribution of
bootstrapped p-values associated with not-yet-rejected hypotheses

I Can be modified to generate adjusted p-values
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Example: Romano and Wolf (2005)

For each of k hypotheses, let t∗,mk be a resampling-based test statistic,
defined for m = 1, . . . ,M bootstrap replications, permutations, etc.

• Test statistics defined so that higher indicates greater significance

• Unadjusted p-value: p̂k = #{t∗,mk ≥ tk}/M

To simplify notation, assume hypotheses are ordered: t1 ≥ t2 > . . . ≥ tk

• For j = 1, . . . , k and m = 1, . . . ,M, define:

max∗,mj = max{t∗,mj , t∗,mj+1 , . . . , t
∗,m
k }

Let ĉ(1− α, j) denote empirical quantile of max∗,mj

• For α = 0.05, j = 2, ĉ(1−α, 2) is value of max∗,m2 at 95th percentile
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Romano-Wolf Algorithm for testing at size α

1. Step 1.

1.1 Reject all hypotheses with tk > ĉ(1 − α, 1)

⇒ Reject Hk if tk is larger than 95 percent of values of max∗,m1

1.2 Let R1 denote number of rejected hypotheses

1.2.1 If R1 = 0, stop — fail to reject all hypotheses

1.2.2 If R1 > 0, proceed to Step 2

2. Steps 2, 3, etc.

2.1 Reject Hk if tk > ĉ(1 − α,R1 + 1)

2.2 Define R2 as total number rejected hypotheses

2.2.1 If R2 = R1, stop

2.2.2 If R2 > R1, proceed to Step 3, repeating until Rj+1 = Rj
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Calculating Romano-Wolf Adjusted p-values

Consider k hypotheses ordered such that t1 ≥ t2 > . . . ≥ tk

1. Step 1. Calculate initial set of adjusted p-values

p̂0
k = #{max∗,mk ≥ tk}/M

2. Step 2. Enforce monotonicity: for j = 2, . . . , k, let

p̂j = max{p̂0
j , p̂j−1}

⇒ The j th adjusted p-value cannot be lower than the (j − 1)th p-value
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Pros and Cons of Romano-Wolf Approach

Romano-Wolf can be implemented in Stata using rwolf command

rwolf y1 y2 y3, indepvar(x) controls(c1 c2) reps(250)

Resampling-approach is computationally intensive

• Large data set, large number of hypotheses potentially problematic

Romano-Wolf provides strong control of FWER

• Controls FWER for all combinations of true/false hypotheses

• Limiting FWER when all k hypotheses are true is weak control

• Strong control means relatively low statistical power
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Controlling the False Discovery Rate

Anderson (JASA, 2008): “[Family-wise error rate] adjustments become
increasingly severe as the number of tests grows — it is inherent in
controlling the probability of making a single false rejection.”

• Alternative is to tolerate some small number of false positives

The false discovery rate: expected proportion of rejections that are
Type I errors (i.e. where null was true and should not have been rejected)

• FWER and FDR are identical under the null (all rejections are errors)

• When some null hypotheses are false, FDR adjustments can be less
stringent than FWER adjustments (because FDR < FWER)

Thought experiment: Let k = 100. The first 20 hypotheses are false,
and clearly rejected using any approach. What expected number of false
rejections you are willing to accept in the remaining set of 80 hypotheses?
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Controlling the False Discovery Rate

Benjamini & Hochberg (1995) propose an approach to FDR control:

1. Order k p-values from smallest to largest, p1, p2, ..., pj , ..., pk ,
where j indicates the rank of the p-value for a specific hypothesis

2. Rejecting all p-values with pj < qj/k yields an expected FDR no
higher than q when p-values are independent or positively correlated

All of the procedures discussed so far modify test sizes (“accept”/reject)

• We often want an adjusted p-value, not a yes/no decision

Anderson (2008) proposed intuitive approach to calculating BH q-values:

• Rescale p-values by number of hypotheses / p-value rank

• Adjust for non-monotonicity
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 ×5

0.002 ×5

0.040 ×5

0.041 ×5

0.099 ×5
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005

0.002 0.010

0.040 0.200

0.041 0.205

0.099 0.495
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 ×5

0.002 0.010 ×4

0.040 0.200 ×3

0.041 0.205 ×2

0.099 0.495 ×1
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 ×5 ×5/1

0.002 0.010 ×4 ×5/2

0.040 0.200 ×3 ×5/3

0.041 0.205 ×2 ×5/4

0.099 0.495 ×1 ×5/5
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 ×5 ×5

0.002 0.010 ×4 ×2.5

0.040 0.200 ×3 ×1.67

0.041 0.205 ×2 ×1.25

0.099 0.495 ×1 ×1
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 0.005 0.005

0.002 0.010 ×4 ×2.5

0.040 0.200 ×3 ×1.67

0.041 0.205 ×2 ×1.25

0.099 0.495 ×1 ×1
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 0.005 0.005

0.002 0.010 ×4 ×2.5

0.040 0.200 ×3 ×1.67

0.041 0.205 ×2 ×1.25

0.099 0.495 0.099 0.099
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 0.005 0.005

0.002 0.010 0.008 0.005

0.040 0.200 0.120 0.067

0.041 0.205 0.082 0.051

0.099 0.495 0.099 0.099
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Multiple Test Corrections: Example

p-value Bonferroni Holm Anderson

0.001 0.005 0.005 0.005

0.002 0.010 0.008 0.005

0.040 0.200 0.120 0.051

0.041 0.205 0.120 0.051

0.099 0.495 0.120 0.099
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Multiple Hypothesis Testing: Summary

Try to avoid testing a large number of hypotheses

• Aggregate your main outcomes into indices (when appropriate)

• Consider pre-specifying “surprising” relationships

Acceptable adjustments differ in complexity, control/power tradeoffs

• Use simple approaches (Bonferroni, Holm) when they work

• Choose more control vs. more power when appropriate

Be suspicious of (your own and others’) p-values near significance cutoffs
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