
ECON 626: Applied Microeconomics

Lecture 8:

Permutations and Bootstraps

Professors: Pamela Jakiela and Owen Ozier



Part I: Randomization Inference



Randomization Inference vs Confidence Intervals

• See Imbens and Rubin, Causal Inference, first chapters.

• 100 years ago, Fisher was after a “sharp null,” where Neyman and
Gosset (Student) were concerned with average effects.



Randomization Inference

How can we do hypothesis testing without asymptotic approximations?
Begin with idea of a sharp null: Y1i = Y0i ∀i . (Gerber and Green, p.62)

• If Y1i = Y0i ∀i , then if we observe either, we have seen both.

• All possible treatment arrangements would yield the same Y values.

• We could then calculate all possible treatment effect estimates under
the sharp null.

• The distribution of these possible treatment effects allows us to
compute p-values: The probability that, under the null, something
this large or larger would occur at random. (For the two sided test,
“large” means in absolute value terms.)

• This extends naturally to the case where treatment assignments are
restricted in some way. Recall, for example, the Bruhn and
McKenzie (2009) discussion of the many different restrictions that
can be used to yield balanced randomization.



Randomization Inference

It is often impractical to enumerate all possible treatment effects.
Instead, we sample a large number of them:

• Regress Y on T. Note the absolute value of the coefficient on T.

• For a large number of iterations:
I Devise an alternative random assignment of treatment. In the

simplest, unrestricted case, this means scrambling the relationship
between Y and T randomly, preserving the number of treatment and
comparison units in T. Call this assignment AlternativeTreatment.

I Regress Y on AlternativeTreatment.

I Note whether the absolute value of the coefficient on
AlternativeTreatment equals or exceeds the absolute value of the
original (true) coefficient on T. If so, increment a counter.

• Divide the counter by the number of iterations. You have a p-value!

Gerber and Green, p.63: “... the calculation of p-values based on an
inventory of possible randomizations is called randomization inference.”



Randomization Inference

Gerber and Green, p.64:

• “The sampling distribution of the test statistic under the null
hypothesis is computed by simulating all possible random
assignments. When the number of random assignments is too large
to simulate, the sampling distribution may be approximated by a
large random sample of possible assignments. p-values are
calculated by comparing the observed test statistic to the
distribution of test statistics under the null hypothesis.”

NOTE: How large a random sample?
What is the standard deviation of a binary outcome with mean 0.05?
About 0.22.
Standard error (of this estimated p-value) ...in a sample of size 100
alternative randomizations? About 0.022.
...in a sample of size 10,000 alternative randomizations? About 0.0022.



Randomization Inference Confidence Intervals

Major drawback

• This doesn’t give you a confidence interval automatically.

• Under assumptions, you can construct them (Gerber and Green,
section 3.5):

I “The most traightforward method for filling in missing potential
outcomes is to assume that the treatment effect τi is the same for all
subjects.”



Randomization Inference Confidence Intervals

Gerber and Green, section 3.5:

• “For subjects in the control condition, missing Yi (1) values are
imputed by adding the estimated ATE to the observed values of
Yi (0).”

• “Similarly, for subjects in the treatment condition, missing Yi (0)
values are imputed by subtracting the estimated ATE from the
observed values of Yi (1).”

• “This approach yields a complete schedule of potential outcomes,
which we may then use to simulate all possible random allocations.”

• “In order to form a 95% confidence interval, we list the estimated
ATE from each random allocation in ascending order. The estimate
at the 2.5th percentile marks the bottom of the interval, and the
estimate at the 97.5th percentile marks the top of the interval.”



Activity 1

Remember the Lady Tasting Tea from the first class?
Suppose she gets a certain number right. For example:

• Eight cups, four of which had milk added first.

• After tasting, suppose she correctly says there are four cups which
had milk added first, but while she correctly identifies three cups,
she gets one wrong. What is the probability of being that correlated
with the truth, or better? (in absolute value terms?)
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= 70. p-value just under 50 percent.

Or what if it were ten cups, and she got 4 out of 5?
This becomes unwieldy to calculate exactly. Activity: randomly sample.



Part IIa: Bootstrap



Bootstrap basics

• See Angrist and Pischke, pp.300-301 (Bootstrap).

• Sampling {Yi ,Xi} with replacement: “pairs bootstrap” or
“nonparametric bootstrap.”

• Keeping Xi fixed, sampling êi with replacement, constructing new
outcomes Yi treating Xi as fixed using the original β̂: one kind of
“parametric bootstrap.”

• Keeping Xi fixed, constructing new outcomes Yi treating Xi as fixed
using the original β̂, but randomly flipping the sign of êi , preserving
relationships between Xi and the variance of the residual: “wild
bootstrap.”



Part IIb:
Few Clusters;

Wild Cluster Bootstrap



What is the problem with having too few clusters?
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How will “bootstrapping” solve the cluster problem?

Bootstrapping is drawing (often with replacement) from some aspect of
the data to quantify variability of a statistic.
We cluster standard errors because we are concerned that the error may
be heteroskedastic and correlated within clusters. So we could not
sensibly use a bootstrapping procedure that ignored covariates or the
cluster structure. Cameron, Gelbach, Miller (2008) and Cameron and
Miller (2015) discuss a procedure that respects covariate structure
(“wild”) and cluster structure (“cluster”) while drawing alternative
residuals (“bootstrap”).



The Wild Cluster Bootstrap

Cameron, Gelbach, and Miller procedure goes as follows (Cameron and
Miller 2015, Section VI.C.2):

• “First, estimate the main model, imposing (forcing) the null
hypothesis that you wish to test... For example, for test of statistical
significance of a single variable regress yig on all components of xig
except the variable that has regressor with coefficient zero under the
null hypothesis.”

• “Form the residual ũig = yig − x ′ig β̃H0”



The Wild Cluster Bootstrap

Cameron, Gelbach, and Miller procedure goes as follows (Cameron and
Miller 2015, Section VI.C.2):

• In each resampling:
I “Randomly assign cluster g the weight dg = −1 with probability 0.5

and the weight dg = 1 with probability 0.5. All observations in
cluster g get the same value of the weight.” (Rademacher weights)

I “Generate new pseudo-residuals u∗ig = dg × ũig , and hence new

outcome variables y∗ig = x ′ig β̃H0 + u∗ig . Then proceed with step 2 as
before, regressing y∗ig on xig [not imposing the null], and calculate w∗

[the t-statistic from this regression, with clustered standard errors.]”

• The p-value for the the test based on the original sample statistic w
equals the proportion of times that |w | > |w∗b |.



What happens with six clusters
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So-called Rademacher and Webb weights
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Webb weights



What happens with six clusters
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What happens with eight clusters
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What happens with six clusters (zoom)
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What happens with eight clusters (zoom)
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