ECON 626: Applied Microeconomics

Lecture 7:

Power

Professors: Pamela Jakiela and Owen Ozier

Lecture 7, Part 1:

Power in Randomized Trials

Power

- Power:
probability of rejecting...

Power

- Power:
probability of rejecting... the null, when...

Power

- Power:
probability of rejecting... the null, when... the alternative is true.

Power

- Power:
probability of rejecting... the null, when... the alternative is true.
- In randomized trials:
probability of having a statistically significant coefficient on treatment when there is, in fact, an effect of treatment.

Power

- Power:
probability of rejecting... the null, when... the alternative is true.
- In randomized trials:
probability of having a statistically significant coefficient on treatment when there is, in fact, an effect of treatment.
- A "power calculation" is...

Power

- Power:
probability of rejecting... the null, when... the alternative is true.
- In randomized trials:
probability of having a statistically significant coefficient on treatment when there is, in fact, an effect of treatment.
- A "power calculation" is... a sample size calculation. This means predicting...

Power

- Power:
probability of rejecting... the null, when... the alternative is true.
- In randomized trials:
probability of having a statistically significant coefficient on treatment when there is, in fact, an effect of treatment.
- A "power calculation" is... a sample size calculation. This means predicting... the standard error.

Coin toss example

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Fail to reject" null if within some distance of mean under the null; "Reject" otherwise.

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Fail to reject" null if within some distance of mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what cutoffs could we use?

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Fail to reject" null if within some distance of mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what cutoffs could we use? Could fail to reject under any of these conditions:
- (A) never
- (B) when exactly the mean (2 heads)
- (C) when within 1 (1,2 , or 3 heads)
- or (D) always.

Coin toss example

- "Null" Hypothesis: the coin is fair 50% chance of heads, 50% chance of tails.
- Structure of the data:

Toss the coin a number of times, count heads.

- The test:
"Fail to reject" null if within some distance of mean under the null; "Reject" otherwise.
- If we only had 4 tosses of the coin, what cutoffs could we use? Could fail to reject under any of these conditions:
- (A) never
- (B) when exactly the mean (2 heads)
- (C) when within 1 (1,2 , or 3 heads)
- or (D) always.
- We don't want to reject the null when it is true, though; How much accidental rejection would each possible cutoff give us?

Distribution of possible results

Distribution of numbers of heads in 4 tosses of a fair coin

Types of error

Test result

	"Reject Null,"" Find an effect!	"Fail to Reject Null," No evidence of effect.
Truth:	Great!	"Type II Error" (low power)
There is an effect	Truth:	"Type I Error"
There is NO effect	Great!${ }^{\text {(test size) }}$	

Types of error

Test result

	"Reject Null," Find an effect!	"Fail to Reject Null," No evidence of effect.
Thuth:	Great!	"Type II Error" (low power)
There is an effect	Truth: There is NO effect	"Type I Error" (test size)

The probability of Type I error (given the null) is the "size" of the test. By convention, we are usually interested in tests of "size" 0.05 .

Types of error

Test result

	"Reject Null," Find an effect!	"Fail to Reject Null," No evidence of effect.
Thuth:	Great!	"Type II Error" (low power)
There is an effect	Truth: There is NO effect	"Type I Error" (test size)

The probability of Type I error (given the null) is the "size" of the test. By convention, we are usually interested in tests of "size" 0.05.

The probability of Type II error is also very important; If P (failure to detect an effect|there is an effect) $=1-\kappa$, then the power of the test is κ. ($I / I I$ distinction: "non-mnemonic" -CB)

Types of error

Test result

	"Reject Null," Find an effect!	"Fail to Reject Null," No evidence of effect.
Thuth:	Great!	"Type II Error" (low power)
There is an effect	Truth: There is NO effect	"Type I Error" (test size)

The probability of Type I error (given the null) is the "size" of the test. By convention, we are usually interested in tests of "size" 0.05.

The probability of Type II error is also very important; If P (failure to detect an effect|there is an effect) $=1-\kappa$, then the power of the test is κ. ($I / I I$ distinction: "non-mnemonic" -CB)
Power depends on anticipated effect size; we typically want power $\geq 80 \%$.

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$		
Unfair coin 2 $\left(p_{H}=0.2\right)$		
Fair coin $\left(p_{H}=0.5\right)$		

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power=0.82	
Unfair coin 2 $\left(p_{H}=0.2\right)$		
Fair coin $\left(p_{H}=0.5\right)$		

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power=0.82	$0.09+0.09=0.18$
Unfair coin 2 $\left(p_{H}=0.2\right)$		
Fair coin $\left(p_{H}=0.5\right)$		

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power=0.82	$0.09+0.09=0.18$
Unfair coin 2 $\left(p_{H}=0.2\right)$	$0.04+0.64=0.68$ power=0.68	
Fair coin $\left(p_{H}=0.5\right)$		

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power=0.82	$0.09+0.09=0.18$
Unfair coin 2 $\left(p_{H}=0.2\right)$	$0.04+0.64=0.68$ power=0.68	$0.16+0.16=0.32$
Fair coin $\left(p_{H}=0.5\right)$		

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power $=0.82$	$0.09+0.09=0.18$
Unfair coin 2 $\left(p_{H}=0.2\right)$	$0.04+0.64=0.68$ power=0.68	$0.16+0.16=0.32$
Fair coin $\left(p_{H}=0.5\right)$	$0.25+0.25=0.50$ size $=0.50$	

Coin Toss example

Calculating size and power with "reject null of fairness if HH or TT" rule:

	Probabilities	
	HH or TT "Reject Null," Find an effect!	HT or TH "Fail to Reject Null," No evidence of effect.
Unfair coin 1 $\left(p_{H}=0.1\right)$	$0.01+0.81=0.82$ power=0.82	$0.09+0.09=0.18$
Unfair coin 2 $\left(p_{H}=0.2\right)$	$0.04+0.64=0.68$ power $=0.68$	$0.16+0.16=0.32$
Fair coin $\left(p_{H}=0.5\right)$	$0.25+0.25=0.50$ size $=0.50$	$0.25+0.25=0.50$

Not enough data even for meaningful test size

Not enough data even for meaningful test size

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science.

Not enough data even for meaningful test size

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science. * (Except the "never reject, no matter what" rule. Not very useful.)

Not enough data even for meaningful test size

- There is no way* to create such a test with four coin tosses so that the chance of accidental rejection under the "null" hypothesis (sometimes written H_{0}) is less than 5%, a standard in social science. * (Except the "never reject, no matter what" rule. Not very useful.)
-What about 20 coin tosses?

Distribution of possible results

Distribution of numbers of heads in 20 tosses of a fair coin

Power with 20 tosses

Power: about 0.62

Power with 30 tosses

Power: about 0.80

Power with 40 tosses

Power: about 0.90

Power with 100 tosses

Power: about 0.9997

Rejecting H_{0} in critical region

Under an alternative:

Under an alternative:

Suppose true effect were 1 SE (standard error):

Under an alternative:

Power would only be approximately 0.17

Under an alternative:

Under an alternative:

Suppose true effect were 3 SEs (standard errors):

Under an alternative:

Power would be approximately 0.85

Power calculation, visually

How the power calculation formula works

Note: see the related figure in the Toolkit paper.

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx($

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) S E(\hat{\beta})$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) \operatorname{SE}(\hat{\beta}) \approx 2.8 \operatorname{SE}(\hat{\beta})$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) S E(\hat{\beta}) \approx 2.8 S E(\hat{\beta})$
We focus on sample size. But how would imperfect compliance or baseline data affect this?

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) \operatorname{SE}(\hat{\beta}) \approx 2.8 \operatorname{SE}(\hat{\beta})$
We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) \operatorname{SE}(\hat{\beta}) \approx 2.8 \operatorname{SE}(\hat{\beta})$
We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.
$M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}$

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:
Minimum Detectable Effect $\approx(0.84+1.96) \operatorname{SE}(\hat{\beta}) \approx 2.8 \operatorname{SE}(\hat{\beta})$
We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{\text {th }}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:

$$
\text { Minimum Detectable Effect } \approx(0.84+1.96) \operatorname{SE}(\hat{\beta}) \approx 2.8 \operatorname{SE}(\hat{\beta})
$$

We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses z rather than t distribution (skirting D.O.F. issue).

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:

$$
\text { Minimum Detectable Effect } \approx(0.84+1.96) S E(\hat{\beta}) \approx 2.8 S E(\hat{\beta})
$$

We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses z rather than t distribution (skirting D.O.F. issue). We could also flip this equation around:

The formula: for power κ and size α,

Effect $>\left(t_{1-\kappa}+t_{\alpha / 2}\right) S E(\hat{\beta})$ Notation: $t_{1-p}=p^{t h}$ percentile of the t dist'n.
Note that the formula above works no matter the design.
Usually: $\alpha=0.05, \kappa=0.80, N$ is large, so:

$$
\text { Minimum Detectable Effect } \approx(0.84+1.96) S E(\hat{\beta}) \approx 2.8 S E(\hat{\beta})
$$

We focus on sample size. But how would imperfect compliance or baseline data affect this? Below, I continue for the standard RCT case.

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \approx\left(z_{1-\kappa}+z_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

In practice (Stata): sampsi
Note: Stata uses z rather than t distribution (skirting D.O.F. issue).
We could also flip this equation around:

$$
\Longleftrightarrow N=\left(z_{1-\kappa}+z_{\alpha / 2}\right)^{2} \cdot\left(\frac{1}{P(1-P)}\right) \cdot\left(\frac{\sigma^{2}}{M D E^{2}}\right)
$$

The formula: for power κ and size α,

Where do these numbers come from, σ^{2} and the effect size?
Two basic options:

The formula: for power κ and size α,

Where do these numbers come from, σ^{2} and the effect size?
Two basic options:

- Consider standardized effect sizes in terms of standard deviations

The formula: for power κ and size α,

Where do these numbers come from, σ^{2} and the effect size?
Two basic options:

- Consider standardized effect sizes in terms of standard deviations
- Draw on existing data: What is available that could inform your project?

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level. But in practice, we often randomize larger units.

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level.
But in practice, we often randomize larger units.
Examples:

- Entire schools are assigned to treatment or comparison; we observe outcomes at the level of the individual pupil
- Classes within a school are assigned to treatment or comparison; we observe outcomes at the level of the individual pupil
- Households are assigned to treatment or comparison; we observe outcomes at the level of the individual family member
- Sub-district locations are assigned to treatment or comparison; we observe outcomes at the level of the individual road
- Bank branch offices are assigned to treatment or comparison; we observe outcomes at the level of the individual borrower

What if treatment is assigned by groups?

We have been thinking here of randomizing at the individual level.
But in practice, we often randomize larger units.
Examples:

- Entire schools are assigned to treatment or comparison; we observe outcomes at the level of the individual pupil
- Classes within a school are assigned to treatment or comparison; we observe outcomes at the level of the individual pupil
- Households are assigned to treatment or comparison; we observe outcomes at the level of the individual family member
- Sub-district locations are assigned to treatment or comparison; we observe outcomes at the level of the individual road
- Bank branch offices are assigned to treatment or comparison; we observe outcomes at the level of the individual borrower

What does this do?
It depends on how much variation is explained by the group each individual is in.

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$.

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point:

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: iid ϵ_{i} having variance σ_{ϵ}^{2}, and equal numbers of observations in treatment and control ($N / 2$ in each):

$$
\hat{\beta}=\frac{1}{N / 2} \sum_{T} y_{i}-\frac{1}{N / 2} \sum_{C} y_{i}
$$

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: iid ϵ_{i} having variance σ_{ϵ}^{2}, and equal numbers of observations in treatment and control ($N / 2$ in each):

$$
\begin{gathered}
\hat{\beta}=\frac{1}{N / 2} \sum_{T} y_{i}-\frac{1}{N / 2} \sum_{C} y_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i}
\end{gathered}
$$

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: iid ϵ_{i} having variance σ_{ϵ}^{2}, and equal numbers of observations in treatment and control ($N / 2$ in each):

$$
\begin{gathered}
\hat{\beta}=\frac{1}{N / 2} \sum_{T} y_{i}-\frac{1}{N / 2} \sum_{C} y_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\operatorname{Var}(\hat{\beta})=\frac{1}{N / 2} \sigma_{\epsilon}^{2}+\frac{1}{N / 2} \sigma_{\epsilon}^{2}=\frac{4}{N} \sigma_{\epsilon}^{2}
\end{gathered}
$$

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: iid ϵ_{i} having variance σ_{ϵ}^{2}, and equal numbers of observations in treatment and control ($N / 2$ in each):

$$
\begin{gathered}
\hat{\beta}=\frac{1}{N / 2} \sum_{T} y_{i}-\frac{1}{N / 2} \sum_{C} y_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\operatorname{Var}(\hat{\beta})=\frac{1}{N / 2} \sigma_{\epsilon}^{2}+\frac{1}{N / 2} \sigma_{\epsilon}^{2}=\frac{4}{N} \sigma_{\epsilon}^{2} \\
\operatorname{SE}(\hat{\beta})=\sqrt{4} \sqrt{\frac{\sigma_{\epsilon}^{2}}{N}}
\end{gathered}
$$

What happens to the variance of the estimator?

Suppose $y_{i}=\beta t_{i}+\epsilon_{i}$. We compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: iid ϵ_{i} having variance σ_{ϵ}^{2}, and equal numbers of observations in treatment and control ($N / 2$ in each):

$$
\begin{gathered}
\hat{\beta}=\frac{1}{N / 2} \sum_{T} y_{i}-\frac{1}{N / 2} \sum_{C} y_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\operatorname{Var}(\hat{\beta})=\frac{1}{N / 2} \sigma_{\epsilon}^{2}+\frac{1}{N / 2} \sigma_{\epsilon}^{2}=\frac{4}{N} \sigma_{\epsilon}^{2} \\
\operatorname{SE}(\hat{\beta})=\sqrt{4} \sqrt{\frac{\sigma_{\epsilon}^{2}}{N}}
\end{gathered}
$$

This is the formula from before, with $P=1 / 2$:

$$
\sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

What happens to the variance of the estimator?

Now suppose $y_{i}=\beta t_{i}+\epsilon_{i}$, but $\epsilon_{i}=\nu_{g}+\eta_{i g}$ for groups g of fixed size n_{g}. We still compare the means of those with $t_{i}=1$ to those with $t_{i}=0$.

What happens to the variance of the estimator?

Now suppose $y_{i}=\beta t_{i}+\epsilon_{i}$, but $\epsilon_{i}=\nu_{g}+\eta_{i g}$ for groups g of fixed size n_{g}. We still compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point:

What happens to the variance of the estimator?

Now suppose $y_{i}=\beta t_{i}+\epsilon_{i}$, but $\epsilon_{i}=\nu_{g}+\eta_{i g}$ for groups g of fixed size n_{g}. We still compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: within a group, treatment is either 1 or 0 ; iid ν_{g} having variance σ_{ν}^{2}, iid $\eta_{i g}$ having variance σ_{η}^{2}, so that $\sigma_{\epsilon}^{2}=\sigma_{\nu}^{2}+\sigma_{\eta}^{2}$, and equal numbers of observations in treatment and control (still $N / 2$ in each).

What happens to the variance of the estimator?

Now suppose $y_{i}=\beta t_{i}+\epsilon_{i}$, but $\epsilon_{i}=\nu_{g}+\eta_{i g}$ for groups g of fixed size n_{g}. We still compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: within a group, treatment is either 1 or 0 ; iid ν_{g} having variance σ_{ν}^{2}, iid $\eta_{i g}$ having variance σ_{η}^{2}, so that $\sigma_{\epsilon}^{2}=\sigma_{\nu}^{2}+\sigma_{\eta}^{2}$, and equal numbers of observations in treatment and control (still $N / 2$ in each). Define the "the intra-cluster correlation," ρ :

$$
\rho_{\epsilon}=\frac{\sigma_{\nu}^{2}}{\sigma_{\nu}^{2}+\sigma_{\eta}^{2}}=\frac{\sigma_{\nu}^{2}}{\sigma_{\epsilon}^{2}}
$$

Two other ways of writing this will be convenient:

$$
\sigma_{\nu}^{2}=\rho_{\epsilon} \sigma_{\epsilon}^{2}
$$

What happens to the variance of the estimator?

Now suppose $y_{i}=\beta t_{i}+\epsilon_{i}$, but $\epsilon_{i}=\nu_{g}+\eta_{i g}$ for groups g of fixed size n_{g}. We still compare the means of those with $t_{i}=1$ to those with $t_{i}=0$. Departure point: within a group, treatment is either 1 or 0 ; iid ν_{g} having variance σ_{ν}^{2}, iid $\eta_{i g}$ having variance σ_{η}^{2}, so that $\sigma_{\epsilon}^{2}=\sigma_{\nu}^{2}+\sigma_{\eta}^{2}$, and equal numbers of observations in treatment and control (still $N / 2$ in each). Define the "the intra-cluster correlation," ρ :

$$
\rho_{\epsilon}=\frac{\sigma_{\nu}^{2}}{\sigma_{\nu}^{2}+\sigma_{\eta}^{2}}=\frac{\sigma_{\nu}^{2}}{\sigma_{\epsilon}^{2}}
$$

Two other ways of writing this will be convenient:

$$
\begin{gathered}
\sigma_{\nu}^{2}=\rho_{\epsilon} \sigma_{\epsilon}^{2} \\
\sigma_{\eta}^{2}=\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}
\end{gathered}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). First, the simple case, $\eta_{i g}$:

$$
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \eta_{i g}\right)
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). First, the simple case, $\eta_{i g}$:

$$
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \eta_{i g}\right)=\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \eta_{i g}\right)
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). First, the simple case, $\eta_{i g}$:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \eta_{i g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \eta_{i g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{(N / 2)} \eta_{i g}\right)
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). First, the simple case, $\eta_{i g}$:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \eta_{i g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \eta_{i g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{(N / 2)} \eta_{i g}\right) \\
& =\frac{1}{(N / 2)^{2}}\left(\frac{N}{2}\right) \sigma_{\eta}^{2}
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). First, the simple case, $\eta_{i g}$:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \eta_{i g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \eta_{i g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{(N / 2)} \eta_{i g}\right) \\
& =\frac{1}{(N / 2)^{2}}\left(\frac{N}{2}\right) \sigma_{\eta}^{2} \\
& =\frac{1}{N / 2} \sigma_{\eta}^{2}
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right)
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right)=\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \nu_{g}\right)
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} n_{g} \nu_{g}\right)
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} n_{g} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} n_{g}^{2} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} \nu_{g}\right)
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} n_{g} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} n_{g}^{2} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} n_{g}^{2}\left(\frac{N}{2 n_{g}}\right) \sigma_{\nu}^{2}
\end{aligned}
$$

What happens to the variance of the estimator?

Let's think through two pieces of ϵ_{i} and the variance of their sums; we will need this in just a moment. Within a single study arm (so consider $N / 2$ observations). Now, the slightly more complicated case, ν_{g} :

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{N / 2} \sum_{a r m} \nu_{g}\right) & =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{a r m} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} n_{g} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} n_{g}^{2} \operatorname{Var}\left(\sum_{1}^{\left(N / 2 n_{g}\right)} \nu_{g}\right) \\
& =\frac{1}{(N / 2)^{2}} n_{g}^{2}\left(\frac{N}{2 n_{g}}\right) \sigma_{\nu}^{2} \\
& =\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}
\end{aligned}
$$

What happens to the variance of the estimator?

As before,

$$
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g}
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2}
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=\frac{4}{N}\left(n_{g} \sigma_{\nu}^{2}+\sigma_{\eta}^{2}\right) \\
= \\
\frac{4}{N}\left(n_{g} \rho_{\epsilon} \sigma_{\epsilon}^{2}+\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}\right)
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=\frac{4}{N}\left(n_{g} \sigma_{\nu}^{2}+\sigma_{\eta}^{2}\right) \\
=\frac{4}{N}\left(n_{g} \rho_{\epsilon} \sigma_{\epsilon}^{2}+\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}\right)=\frac{4}{N} \sigma_{\epsilon}^{2}\left(\left(n_{g}-1\right) \rho_{\epsilon}+1\right)
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=\frac{4}{N}\left(n_{g} \sigma_{\nu}^{2}+\sigma_{\eta}^{2}\right) \\
=\frac{4}{N}\left(n_{g} \rho_{\epsilon} \sigma_{\epsilon}^{2}+\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}\right)=\frac{4}{N} \sigma_{\epsilon}^{2}\left(\left(n_{g}-1\right) \rho_{\epsilon}+1\right)
\end{gathered}
$$

$S E(\hat{\beta})=$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\begin{aligned}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=\frac{4}{N}\left(n_{g} \sigma_{\nu}^{2}+\sigma_{\eta}^{2}\right) \\
=\frac{4}{N}\left(n_{g} \rho_{\epsilon} \sigma_{\epsilon}^{2}+\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}\right)=\frac{4}{N} \sigma_{\epsilon}^{2}\left(\left(n_{g}-1\right) \rho_{\epsilon}+1\right) \\
S E(\hat{\beta})=\sqrt{4} \sqrt{\frac{\sigma_{\epsilon}^{2}}{N}} \sqrt{\left(n_{g}-1\right) \rho_{\epsilon}+1}=
\end{aligned}
\end{gathered}
$$

What happens to the variance of the estimator?

As before,

$$
\begin{gathered}
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \epsilon_{i}-\frac{1}{N / 2} \sum_{C} \epsilon_{i} \\
\hat{\beta}=\beta+\frac{1}{N / 2} \sum_{T} \nu_{g}+\frac{1}{N / 2} \sum_{T} \eta_{i g}-\frac{1}{N / 2} \sum_{C} \nu_{g}-\frac{1}{N / 2} \sum_{C} \eta_{i g} \\
\operatorname{Var}(\hat{\beta})=\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2}+\frac{n_{g}}{N / 2} \sigma_{\nu}^{2}+\frac{1}{N / 2} \sigma_{\eta}^{2} \\
=\frac{4 n_{g}}{N} \sigma_{\nu}^{2}+\frac{4}{N} \sigma_{\eta}^{2} \\
=\frac{4}{N}\left(n_{g} \sigma_{\nu}^{2}+\sigma_{\eta}^{2}\right) \\
=\frac{4}{N}\left(n_{g} \rho_{\epsilon} \sigma_{\epsilon}^{2}+\left(1-\rho_{\epsilon}\right) \sigma_{\epsilon}^{2}\right)=\frac{4}{N} \sigma_{\epsilon}^{2}\left(\left(n_{g}-1\right) \rho_{\epsilon}+1\right) \\
\operatorname{SE}(\hat{\beta})=\sqrt{4} \sqrt{\frac{\sigma_{\epsilon}^{2}}{N}} \sqrt{\left(n_{g}-1\right) \rho_{\epsilon}+1}=\sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \sqrt{\left(n_{g}-1\right) \rho_{\epsilon}+1}
\end{gathered}
$$

The formula

Scale the effective standard error by:

$$
\begin{aligned}
& \text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho} \\
& \rho(\text { "rho") is the intra-class correlation. }
\end{aligned}
$$

The formula

Scale the effective standard error by:

$$
\begin{gathered}
\text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho} \\
\rho \text { ("rho") is the intra-class correlation. } \\
\text { In practice (Stata): loneway and sampclus }
\end{gathered}
$$

The formula

Scale the effective standard error by:

$$
\text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{g r o u p s i z e}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation.
In practice (Stata): loneway and sampclus
Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}}
$$

The formula

Scale the effective standard error by:

$$
\text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation.
In practice (Stata): loneway and sampclus
Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

We could also flip this equation around (swapping z for t):

The formula

Scale the effective standard error by:

$$
\text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation.
In practice (Stata): loneway and sampclus
Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

We could also flip this equation around (swapping z for t):
$\Longleftrightarrow N=\left(z_{1-\kappa}+z_{\alpha / 2}\right)^{2} \cdot\left(\frac{1}{P(1-P)}\right) \cdot\left(\frac{\sigma^{2}}{M D E^{2}}\right)$

The formula

Scale the effective standard error by:

$$
\text { Design Effect ("Moulton factor") }=\sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

ρ ("rho") is the intra-class correlation.
In practice (Stata): loneway and sampclus
Recall earlier formula:

$$
M D E=\left(t_{1-\kappa}+t_{\alpha / 2}\right) \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^{2}}{N}} \sqrt{1+\left(n_{\text {groupsize }}-1\right) \rho}
$$

We could also flip this equation around (swapping z for t):
$\Longleftrightarrow N=\left(z_{1-\kappa}+z_{\alpha / 2}\right)^{2} \cdot\left(\frac{1}{P(1-P)}\right) \cdot\left(\frac{\sigma^{2}}{M D E^{2}}\right) \cdot\left(1+\left(n_{\text {groupsize }}-1\right) \rho\right)$

Estimation example: clustered standard errors

Stata:

Estimation example: clustered standard errors

Stata:

$$
V_{\text {cluster }}=\left(X^{\prime} X\right)^{-1} \sum_{j=1}^{n_{c}} u_{j}^{\prime} u_{j}\left(X^{\prime} X\right)^{-1}
$$

where

$$
u_{j}=\sum_{j_{\text {cluster }}} e_{i} x_{i}
$$

Estimation example: clustered standard errors

Stata:

$$
V_{\text {cluster }}=\left(X^{\prime} X\right)^{-1} \sum_{j=1}^{n_{c}} u_{j}^{\prime} u_{j}\left(X^{\prime} X\right)^{-1}
$$

where

$$
u_{j}=\sum_{j_{\text {cluster }}} e_{i} x_{i}
$$

Angrist and Pischke 8.2.6:

Estimation example: clustered standard errors

Stata:

$$
V_{\text {cluster }}=\left(X^{\prime} X\right)^{-1} \sum_{j=1}^{n_{c}} u_{j}^{\prime} u_{j}\left(X^{\prime} X\right)^{-1}
$$

where

$$
u_{j}=\sum_{j_{\text {custer }}} e_{i} x_{i}
$$

Angrist and Pischke 8.2.6:

$$
\hat{\Omega}_{c l}=\left(X^{\prime} X\right)^{-1}\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\left(X^{\prime} X\right)^{-1}
$$

where

$$
\hat{\Psi}_{g}=a \hat{e}_{g} \hat{e}_{g}^{\prime}=a\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \ldots & \hat{e}_{n_{g} g}^{2}
\end{array}\right]
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \ldots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal:

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g};

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal:

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \ldots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$. Diagonal terms have expectation

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \ldots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$. Diagonal terms have expectation σ_{ϵ}^{2},

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \ldots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2}
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2} n_{g}
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2} n_{g}(1+
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2} n_{g}\left(1+\left(n_{g}-1\right) \rho\right)
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\cdots & \cdots & \cdots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2} n_{g}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { or }
$$

Estimation example: clustered standard errors

But remember, in the simplest case, X_{g}^{\prime} is either:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right] \text { or }\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

So

$$
X_{g}^{\prime}\left[\begin{array}{cccc}
\hat{e}_{1 g}^{2} & \hat{e}_{1 g} \hat{e}_{2 g} & \ldots & \hat{e}_{1 g} \hat{e}_{n_{g} g} \\
\hat{e}_{2 g} \hat{e}_{1 g} & \hat{e}_{2 g}^{2} & \ldots & \hat{e}_{2 g} \hat{e}_{n_{g} g} \\
\ldots & \ldots & \ldots & \ldots \\
\hat{e}_{n_{g} g} \hat{e}_{1 g} & \hat{e}_{n_{g} g} \hat{e}_{2 g} & \cdots & \hat{e}_{n_{g} g}^{2}
\end{array}\right] X_{g}
$$

Count the terms. diagonal: n_{g}; off-diagonal: $n_{g}\left(n_{g}-1\right)$.
Diagonal terms have expectation σ_{ϵ}^{2},
while off-diagonal terms have expectation $\sigma_{\nu}^{2}=\rho \sigma_{\epsilon}^{2}$.
The matrix product then has expectation:

$$
\sigma_{\epsilon}^{2} n_{g}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \text { or } \sigma_{\epsilon}^{2} n_{g}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=
$$

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=\sigma_{\epsilon}^{2}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=\sigma_{\epsilon}^{2}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

This is a familiar matrix - it is $X^{\prime} X$!

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=\sigma_{\epsilon}^{2}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

and thus

$$
E\left[\hat{\Omega}_{c l}\right]=
$$

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=\sigma_{\epsilon}^{2}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

and thus

$$
E\left[\hat{\Omega}_{c l}\right]=E\left[\left(X^{\prime} X\right)^{-1}\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\left(X^{\prime} X\right)^{-1}\right]
$$

Estimation example: clustered standard errors

So:

$$
E\left[\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\right]=\sigma_{\epsilon}^{2}\left(1+\left(n_{g}-1\right) \rho\right)\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

and thus

$$
\begin{aligned}
E\left[\hat{\Omega}_{c l}\right] & =E\left[\left(X^{\prime} X\right)^{-1}\left(\sum_{g} X_{g}^{\prime} \hat{\Psi}_{g} X_{g}\right)\left(X^{\prime} X\right)^{-1}\right] \\
& =\left(1+\left(n_{g}-1\right) \rho\right)\left(X^{\prime} X\right)^{-1} \sigma_{\epsilon}^{2}
\end{aligned}
$$

Intra-cluster correlation ρ (greek letter "rho")

But where does this ρ number come from before you have endline data? Two basic options:

Intra-cluster correlation ρ (greek letter "rho")

But where does this ρ number come from before you have endline data? Two basic options:

- Consider what might be reasonable assumptions

Intra-cluster correlation ρ (greek letter "rho")

But where does this ρ number come from before you have endline data? Two basic options:

- Consider what might be reasonable assumptions
- Draw on existing data (again): What is available that could inform your project?

Intra-class correlations we have known

Data source	ICC (ρ)
Madagascar Math + Language	0.5
Busia, Kenya Math + Language	0.22
Udaipur, India Math + Language	0.23
Mumbai, India Math + Language	0.29
Vadodara, India Math + Language	0.28
Busia, Kenya Math	0.62
Busia, Kenya Language	0.43
Busia, Kenya Science	0.35

Duflo, Glennerster, and Kremer (2006) Using Randomization in Development Economics Research:
A Toolkit

Data source	ICC (ρ)
US Elementary Math, unconditional	0.22
US Elementary Math, rural only, unconditional	0.15
US Elementary Math, rural only, conditional on previous scores	0.12

Hedges \& Hedberg (2007), Intraclass correlations for planning group randomized experiments in rural education.

More variations

For discussion or further reading:

- Imperfect compliance with treatment;

May be discussed in later lectures:

Next:

More variations

For discussion or further reading:

- Imperfect compliance with treatment;
- Alternative tests

May be discussed in later lectures:

Next:

More variations

For discussion or further reading:

- Imperfect compliance with treatment;
- Alternative tests
- Small numbers of groups

May be discussed in later lectures:

Next:

More variations

For discussion or further reading:

- Imperfect compliance with treatment;
- Alternative tests
- Small numbers of groups
- "A first comment is that, despite all the precision of these formulas, power calculations involve substantial guess work in practice."
May be discussed in later lectures:

Next:

More variations

For discussion or further reading:

- Imperfect compliance with treatment;
- Alternative tests
- Small numbers of groups
- "A first comment is that, despite all the precision of these formulas, power calculations involve substantial guess work in practice."
May be discussed in later lectures:
- Multiple treatments, multiple testing, attrition

Next:

More variations

For discussion or further reading:

- Imperfect compliance with treatment;
- Alternative tests
- Small numbers of groups
- "A first comment is that, despite all the precision of these formulas, power calculations involve substantial guess work in practice."
May be discussed in later lectures:
- Multiple treatments, multiple testing, attrition

Next:

- Actual mechanics of randomization; covariates; stratification

Lecture 7, Part 2:

Design and Balance in Randomized Trials

Besides statistics, registration

Economics: since 2012

AEA RCT Registry

The American Economic Association's registry for randomized controlled trials

ABOUT THE REGISTRY

Welcome.

This is the American Economic Association's registry for randomized controlled trials.
Randomized Controlled Trials (RCTs) are widely used in various fields of economics and other social sciences. As they become more numerous, a central registry on which trials are on-going or complete (or withdrawn) becomes important for various reasons: as a source of results for meta-analysis; as a one-stop resource to find out about available survey instruments and data.

Because existing registries are not well suited to the need for social sciences, in April 2012, the AEA executive committee decided to establish such a registry for economics and other social sciences.

Besides statistics, registration

Other disciplines: this example since 2000

BioMed Central
The Open Access Publisher

ISRCTN registry

What is the ISRCTN registry?

ISRCTN is a registry and curated database containing the basic set of data items deemed essential to describe a study at inception, as per the requirements set out by the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and the International Committee of Medical Journal Editors (ICMJE) guidelines. All study records in the database are freely accessible and searchable and have been assigned an ISRCTN ID.

The registry was launched in 2000, in response to the growing body of opinion in favour of prospective registration of randomised controlled trials (RCTs). Originally ISRCTN stood for 'International Standard Randomised Controlled Trial Number'; however, over the years the scope of the registry has widened beyond randomized controlled trials to include any study designed to assess the efficacy of health interventions in a human population. This includes both observational and interventional trials.

Other registries include non-RCTs, focus on specific fields, etc.

Besides statistics, documentation: CONSORT

Fig 1-Flow chart describing progress of patients through randomised trial (reproduced from JAMA) ${ }^{9}$

UMD Economics 626: Applied Microeconomics

Besides statistics, documentation: CONSORT

Flow diagram of the progress through the phases of a parallel randomised trial of two groups (that is, enrolment, intervention allocation, follow-up, and data analysis)

CONSORT-style example from QJE

Figure I
Project Timeline of the Primary School Deworming Program (PSDP) and the Kenya Life Panel Survey (KLPS)

CONSORT-style example from ECRQ

H.A. Knauer et al./Early Childhood Research Quarterly xxx (2019) $x x x-x x x$

Fig. 1. CONSORT flow diagram.

Besides statistics, documentation: CONSORT

Heading	Subheading	Descriptor
Title Abstract Introduction Methods	Protocol	Identify the study as a randomised trial
		Use a structured format
		State prospectively defined hypothesis, clinical objectives, and planned subgroup or covariate analyses
		Describe
		Planned study population, together with inclusion or exclusion criteria
		Planned interventions and their timing
		Primary and secondary outcome measure(s) and the minimum important difference(s), and indicate how the target sample size was projected
		Rationale and methods for statistical analyses, detailing main comparative analyses and whether they were completed on an intention to treat basis
		Prospectively defined stopping rules (if warranted)
	Assignment	Describe
		Unit of randomisation (for example, individual, cluster, geographic)
		Method used to generate the allocation schedule
		Method of allocation concealment and timing of assignment
		Method to separate the generator from the executor of assignment
	Masking (blinding)	Describe
		Mechanism (for example, capsules, tablets)
		Similarity of treatment characteristics (for example, appearance, taste)
		Allocation schedule control (location of code during trial and when broken)
		Evidence for successful blinding among participants, person doing intervention, outcome assessors, and data analysts
Results	Participant flow and follow up	Provide a trial profile (fig 1) summarising participant flow, numbers and timing of randomisation assignment, interventions, and measurements for each randomised group
	Analysis	State estimated effect of intervention on primary and secondary outcome measures, including a point estimate and measure of precision (confidence interval)
		State results in absolute numbers when feasible (for example, 10/20, not 50\%)
		Present summary data and appropriate descriptive and interferential statistics in sufficient detail to permit alternative analyses and replication
		Describe prognostic variables by treatment group and any attempt to adjust for them
		Describe protocol deviations from the study as planned, together with the reasons
Discussion		State specific interpretation of study findings, including sources of bias and imprecision (internal validity) and discussion of external validity, including appropriate quantitative measures when possible
		State general interpretation of the data in light of the totality of the available evidence

Besides statistics, documentation: CONSORT

Table 1—Items that should be included in reports of randomised trials (reproduced from JAMA) ${ }^{9}$

Heading
Titie
Abstract
Introduction

Descriptor

Identify the study as a randomised trial
Use a structured format
State prospectively defined hypothesis, clinical objectives, and planned subgroup or covariate analyses

Besides statistics, documentation: CONSORT

Table 1-Items that should be included in reports of randomised trials (reproduced from JAMA) ${ }^{9}$

Heading
Titie Identify the study as a randomised trial
Abstract
Introduction

Descriptor

Use a structured format
State prospectively defined hypothesis, clinical objectives, and planned subgroup or covariate analyses

Some of these are clearly more applicable to economics than others.

Besides statistics, documentation: CONSORT

Methods	Protocol	Describe Planned study population, together with inclusion or exclusion criteria Planned interventions and their timing Primary and secondary outcome measure(s) and the minimum important difference(s), and indicate how the target sample size was projected Rationale and methods for statistical analyses, detailing main comparative analyses and whether they were completed on an intention to treat basis Prospectively defined stopping rules (if warranted)
	Assignment	Describe Unit of randomisation (for example, individual, cluster, geographic) Method used to generate the allocation schedule Method of allocation concealment and timing of assignment Method to separate the generator from the executor of assignment
	Masking (blinding)	Describe Mechanism (for example, capsules, tablets) Similarity of treatment characteristics (for example, appearance, taste) Allocation schedule control (location of code during trial and when broken) Evidence for successful blinding among participants, person doing intervention, outcome assessors, and data analysts

Besides statistics, documentation: CONSORT

Results | Provide a trial profile (fig 1) summarising participant flow, numbers and timing of randomisation assignment, interventions, |
| :--- |
| and measurements for each randomised group |
| State estimated effect of intervention on primary and secondary outcome measures, including a point estimate and |
| measure of precision (confidence interval) |
| State results in absolute numbers when feasible (for example, $10 / 20$, not 50%) |
| Present summary data and appropriate descriptive and interferential statistics in sufficient detail to permit alternative |
| analyses and replication |
| Describe prognostic variables by treatment group and any attempt to adjust for them |
| Describe protocol deviations from the study as planned, together with the reasons |

Discussion (internal validity) and discussion of

State specific interpretation of study findings, including sources of bias and imprecision (inter
external validity, including appropriate quantitative measures when possible
State general interpretation of the data in light of the totality of the available evidence

Bruhn and McKenzie - Approach

A survey of practitioners,

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka
- Employment survey in Mexico

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka
- Employment survey in Mexico
- Indonesia Family Life Survey: children in school

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka
- Employment survey in Mexico
- Indonesia Family Life Survey: children in school
- Indonesia Family Life Survey: household expenditure

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka
- Employment survey in Mexico
- Indonesia Family Life Survey: children in school
- Indonesia Family Life Survey: household expenditure
- Learning \& Educational Achievement Project (Pakistan): math test

Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

- Microenterprise profits in Sri Lanka
- Employment survey in Mexico
- Indonesia Family Life Survey: children in school
- Indonesia Family Life Survey: household expenditure
- Learning \& Educational Achievement Project (Pakistan): math test
- Learning \& Educational Achievement Project: height z-score

Bruhn and McKenzie - Approach

Then, five randomization methods:

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)
- Stratification

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)
- Stratification
- Pair-wise matching

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)
- Stratification
- Pair-wise matching
- Rerandomization: redraw if anything is significant

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)
- Stratification
- Pair-wise matching
- Rerandomization: redraw if anything is significant
- Rerandomization: minimum maximum t statistic

Bruhn and McKenzie - Approach

Then, five randomization methods:

- Randomization (single random draw)
- Stratification
- Pair-wise matching
- Rerandomization: redraw if anything is significant
- Rerandomization: minimum maximum t statistic

Bruhn and McKenzie - Approach

Really important: choosing the variables.

Bruhn and McKenzie - Approach

Really important: choosing the variables.
"The set of outcomes we have chosen spans a range of the ability of the baseline variables to predict future outcomes.

Bruhn and McKenzie - Approach

Really important: choosing the variables.
"The set of outcomes we have chosen spans a range of the ability of the baseline variables to predict future outcomes. At one end is microenterprise profits in Sri Lanka, where baseline profits and 6 baseline individual and firm characteristics explain only 12.2 percent of the variation in profits 6 months later.

Bruhn and McKenzie - Approach

Really important: choosing the variables.
> "The set of outcomes we have chosen spans a range of the ability of the baseline variables to predict future outcomes. At one end is microenterprise profits in Sri Lanka, where baseline profits and 6 baseline individual and firm characteristics explain only 12.2 percent of the variation in profits 6 months later. ... The math test scores and height z-scores in the LEAPS data have the most variation explained by baseline characteristics, with 43.6 percent of the variation in follow-up test scores explained by the baseline test score and 6 baseline characteristics."

Bruhn and McKenzie - Recommendation 1

"Better reporting of the method of random assignment is needed. This should include a description of:
a. Which randomization method was used and why.
b. Which variables were used for balancing?
c. For stratification, how many strata were used?
d. For rerandomization, which cutoff rules were used?

This is particularly important for experiments with small samples, where the randomization method makes more difference."

Bruhn and McKenzie - Recommendation 1

"Better reporting of the method of random assignment is needed. This should include a description of:
a. Which randomization method was used and why.
b. Which variables were used for balancing?
c. For stratification, how many strata were used?
d. For rerandomization, which cutoff rules were used?

This is particularly important for experiments with small samples, where the randomization method makes more difference."

Bruhn and McKenzie - Recommendation 1

"Better reporting of the method of random assignment is needed.
This should include a description of:
a. Which randomization method was used and why.
b. Which variables were used for balancing?
c. For stratification, how many strata were used?
d. For rerandomization, which cutoff rules were used?

This is particularly important for experiments with small samples, where the randomization method makes more difference."
(Obvious in retrospect?)

Bruhn and McKenzie - Recommendation 2

"Clearly describe how the randomization was carried out in practice.
a. Who performed the randomization?
b. How was the randomization done (coin toss, random number generator, etc.)?
c. Was the randomization carried out in public or private?"

Bruhn and McKenzie - Recommendation 3

"Re-think the common use of rerandomization.
Our simulations find pair-wise matching to generally perform as well, or better, than rerandomization in terms of balance and power, and like rerandomization, matching allows balance to be sought on more variables than possible under stratification. Adjusting for the method of randomization is statistically cleaner with matching or stratification than with rerandomization."

Bruhn and McKenzie - Recommendation 4

"When deciding which variables to balance on, strongly consider the baseline outcome variable and geographic region dummies, in addition to variables desired for subgroup analysis."

Bruhn and McKenzie - Recommendation 5

"Be aware that over-stratification can lead to a loss of power in extreme cases. This is because using a large number of strata involves a downside in terms of loss in degrees of freedom when estimating standard errors, possibly more cases of missing observations, and odd numbers within strata when stratification is used."

Bruhn and McKenzie - Recommendation 6

"As ye randomize, so shall ye analyze." (Include dummies for strata in analysis.) "Similarly, pair dummies should be included for matched randomization, or linear variables used for rerandomizations."

Bruhn and McKenzie - Recommendation 7

"In the ex post analysis, do not automatically control for baseline variables that show a statistically significant difference in means. The previous literature, and our simulations, suggest that it is a better rule to control for variables that are thought to influence follow-up outcomes, independent of whether their difference in means is statistically significant or not.

Bruhn and McKenzie - Recommendation 7

"In the ex post analysis, do not automatically control for baseline variables that show a statistically significant difference in means. The previous literature, and our simulations, suggest that it is a better rule to control for variables that are thought to influence follow-up outcomes, independent of whether their difference in means is statistically significant or not. ... One should still be cautious in the use of ex post controls, given the potential for finite-sample bias if treatment heterogeneity is correlated with the square of these covariates."

McKenzie (2012)

"The vast majority of randomized experiments in economics rely on a single baseline and single follow-up survey.

McKenzie (2012)

"The vast majority of randomized experiments in economics rely on a single baseline and single follow-up survey. While such a design is suitable for study of highly autocorrelated and relatively precisely measured outcomes in the health and education domains, it is unlikely to be optimal for measuring noisy and relatively less autocorrelated outcomes such as business profits, and household incomes and expenditures.

McKenzie (2012)

"The vast majority of randomized experiments in economics rely on a single baseline and single follow-up survey. While such a design is suitable for study of highly autocorrelated and relatively precisely measured outcomes in the health and education domains, it is unlikely to be optimal for measuring noisy and relatively less autocorrelated outcomes such as business profits, and household incomes and expenditures. Taking multiple measurements of such outcomes at relatively short intervals allows one to average out noise, increasing power.

McKenzie (2012)

"The vast majority of randomized experiments in economics rely on a single baseline and single follow-up survey. While such a design is suitable for study of highly autocorrelated and relatively precisely measured outcomes in the health and education domains, it is unlikely to be optimal for measuring noisy and relatively less autocorrelated outcomes such as business profits, and household incomes and expenditures. Taking multiple measurements of such outcomes at relatively short intervals allows one to average out noise, increasing power. When the outcomes have low autocorrelation and budget is limited, it can make sense to do no baseline at all. Moreover, I show how for such outcomes, more power can be achieved with multiple follow-ups than allocating the same total sample size over a single follow-up and baseline.

McKenzie (2012)

"The vast majority of randomized experiments in economics rely on a single baseline and single follow-up survey. While such a design is suitable for study of highly autocorrelated and relatively precisely measured outcomes in the health and education domains, it is unlikely to be optimal for measuring noisy and relatively less autocorrelated outcomes such as business profits, and household incomes and expenditures. Taking multiple measurements of such outcomes at relatively short intervals allows one to average out noise, increasing power. When the outcomes have low autocorrelation and budget is limited, it can make sense to do no baseline at all. Moreover, I show how for such outcomes, more power can be achieved with multiple follow-ups than allocating the same total sample size over a single follow-up and baseline. I also highlight the large gains in power from ANCOVA analysis rather than difference-in-differences analysis when autocorrelations are low."

Activities

