ECON 626: Applied Microeconomics

Lecture 6:

Selection on Observables

Professors: Pamela Jakiela and Owen Ozier

Experimental and Quasi-Experimental Approaches

Approaches to causal inference (that we've discussed so far):

- The experimental ideal (i.e. RCTs)
- Natural experiments
- Difference-in-differences
- Instrumental variables
- Regression discontinuity

These approaches* reply on good-as-random variation in treatment; identify impact on compliers irrespective of the nature of confounds

^{*} With possible exception of diff-in-diff

Causal Inference When All Else Fails

What can we do when we don't have an experiment or quasi-experiment?

- Credibility revolution in economics nudges us to focus on questions that can be answered through "credible" identification strategies
- Is this good for science? Is it good for humanity?

We should not restrict our attention to questions that can be answered through randomized trials, natural experiments, or quasi-experiments!

• Research frontier: using best methods available, cond'l on question

Causal Inference When All Else Fails

Non-experimental causal inference: explicit consideration of confounds

- Structural models (take a class from Sergio or Sebastian!)
- Matching estimators (just don't use propensity scores)
- Directed acyclic graphs (DAGs)
- Coefficient stability
- Machine learning to select covariates

Motivating Example

Example: the impact of Catholic schools on high school graduation

	All St	udents	Catholic Elementary			
	No Controls	w/ Controls	No Controls	w/ Controls		
Probit coefficient	0.97	0.41	0.99	1.27		
S.E.	(0.17)	(0.21)	(0.24)	(0.29)		
Marginal effects	[0.123]	[0.052]	[0.11]	[0.088]		
Pseudo R ²	0.01	0.34	0.11	0.58		

Source: Table 3 in Altonji, Elder, Taber (2005)

A Framework for Thinking About Selection Bias

$$Y^* = \alpha CH + W'\Gamma$$

= $\alpha CH + X'\Gamma_X + \xi$
= $\alpha CH + X'\gamma + \epsilon$

where

- α is the causal impact of Catholic high school (CH)
- W is all covariates, and X is observed covariates
- ϵ is defined to be orthogonal to \boldsymbol{X} s.t. $Cov(X, \epsilon) = 0$

In this framework, why is the OLS estimate of α biased?

How Severe Is Selection on Unobservables?

Consider a linear projection of CH onto $X'\gamma$

$$CH = \phi_0 + \phi_{X'\gamma} X' \gamma + \phi_{\epsilon} \epsilon$$

Typical identification assumption in OLS: $\phi_{\epsilon}=0$

• AET propose weaker proportional selection condition: $\phi_{\epsilon} = \phi_{X'\gamma}$

Proportional selection is equivalent to following condition:

$$\frac{E[\epsilon|\textit{CH}=1] - E[\epsilon|\textit{CH}=0]}{\textit{Var}(\epsilon)} = \frac{E[\textbf{\textit{X}}'\boldsymbol{\gamma}|\textit{CH}=1] - E[\textbf{\textit{X}}'\boldsymbol{\gamma}|\textit{CH}=0]}{\textit{Var}(\textbf{\textit{X}}'\boldsymbol{\gamma})}$$

Let's Assume...

- 1. Elements of \boldsymbol{X} chosen at random W that determine \boldsymbol{W}
- 2. \boldsymbol{X} and \boldsymbol{W} have many elements; none dominant predictors of Y
- 3. Additional (apparently hard to state) assumption:

"Roughly speaking, the assumption is that the regression of CH* on Y* - α CH is equal to the regression of the part of CH* that is orthogonal to \boldsymbol{X} on the corresponding part of Y* - α CH."

where CH^* is an unobserved latent variable that determines CH

Bounding Selection on Unobservables

Define $CH = \mathbf{X}'\beta + \widetilde{CH}$ and re-write estimating equation:

$$Y^* = \alpha \widetilde{CH} + X'(\gamma + \alpha \beta) + \epsilon$$

This gives us a formula for selection bias:

plim
$$\hat{\alpha} = \alpha + \frac{Var(CH)}{Var(\widetilde{CH})} (E[\epsilon|CH=1] - E[\epsilon|CH=0])$$

The bias is bounded under proportional selection assumption:

$$E[\epsilon|\mathit{CH}=1] - E[\epsilon|\mathit{CH}=0] = \mathit{Var}(\epsilon) \cdot \frac{E[X'\gamma|\mathit{CH}=1] - E[X'\gamma|\mathit{CH}=0]}{\mathit{Var}(X'\gamma)}$$

Some Restrictions Apply

"Note that when $Var(\epsilon)$ is very large relative to $Var(\mathbf{X}'\gamma)$, what one can learn is limited

. . .

even a small shift in $(E[\epsilon|CH=1] - E[\epsilon|CH=0]) / Var(\epsilon)$ is consistent with a large bias in α ."

The degree of selection bias is bounded, but bounds may be wide:

$$\mathsf{bias} < \frac{\mathit{Var}(\mathit{CH})}{\mathit{Var}(\widetilde{\mathit{CH}})} \left(\mathit{Var}(\epsilon) \cdot \frac{\mathit{E}[\mathbf{X}'\gamma|\mathit{CH} = 1] - \mathit{E}[\mathbf{X}'\gamma|\mathit{CH} = 0]}{\mathit{Var}(\mathbf{X}'\gamma)} \right)$$

Altonji, Elder, Taber (2005)

 $\begin{tabular}{l} TABLE~3\\ OLS~and~Probit~Estimates~of~Catholic~High~School~Effects~in~Subsamples~of~NELS:88~(Weighted)\\ \end{tabular}$

		FULL SAMP	LE: CONTROLS		CAT	THOLIC 8TH GRAD	E ATTENDEES: C	ONTROLS
	None (1)	Family Background, City Size, and Region ^a (2)	Col. 2 Plus 8th Grade Tests (3)	Col. 3 Plus Other 8th Grade Measures ^b (4)	None (5)	Family Background, City Size, and Region ^a (6)	Col. 2 Plus 8th Grade Tests (7)	Col. 3 Plus Other 8th Grade Measures ^b (8)
				A. High Scho	ol Graduation	n		
Probit	.97 (.17) [.123] .01	.57 (.19) [.081] .16	.48 (.22) [.068] .21	.41 (.21) [.052] .34	.99 (.24) [.105] .11	.88 (.25) [.084] .35	.95 (.27) [.081] .44	1.27 (.29) [.088] .58
				B. Colleg	e in 1994			
Probit Pseudo R^2	.73 (.08) [.283] .02	.37 (.09) [.106] .19	.33 (.09) [.084] .29	.32 (.09) [.074] .34	.60 (.13) [.236] .04	.48 (.15) [.154] .18	.56 (.15) [.154] .29	.60 (.15) [.149] .36
				C. 12th Grade	Reading Sco	re		
OLS	4.28 (.47)	2.08 (.54)	1.18 (.38)	1.14 (.38)	1.92 (.82)	.17 (.98)	.37 (.63)	.33 (.62)
R^2	.01	.19	.60	.60	.01	.19	.59	.62
				D. 12th Grad	e Math Score	9		
OLS	4.86 (.44)	1.98 (.54)	1.07 (.34)	.92 (.32)	2.79 (.77)	1.10 (1.00)	1.46 (.53)	1.14 (.46)
R^2	.01	.26	.72	.74	.02	.26	.73	.77

Altonji, Elder, Taber (2005)

TAI	BLE 3	CATHOLIC 8TH GRADE ATTENDEES: CONTROLS					
OLS AND PROBIT ESTIMATES OF CATHOLIC HIGH SCHOOL EFFECTS IN SUBSAMPLES OF NELS:88 (Weighted)			None (5)	Family Background, City Size, and Region ^a (6) Col. 2 Plu 8th Grade Tests (7)			
	A. High School Graduation	Probit	.99 (.24) [.105]	.88 (.25) [.084]	.95 (.27) [.081]	1.27 (.29) [.088]	
		Pseudo R^{2c}	.11	.35	.44	.58	
	B. College in 1994	Probit $ Pseudo \ R^2 $.60 (.13) [.236] .04	.48 (.15) [.154] .18	.56 (.15) [.154] .29	.60 (.15) [.149] .36	
	C. 12th Grade Reading Score	OLS R^2	1.92 (.82) .01	.17 (.98) .19	.37 (.63) .59	.33 (.62) .62	
-	D. 12th Grade Math Score	OLS R ²	2.79 (.77) .02	1.10 (1.00) .26	1.46 (.53) .73	1.14 (.46)	

Altonji, Elder, Taber (2005)

TABLE 6Amount of Selection on Unobservables Relative to Selection on Observables Required to Attribute the Entire Catholic School Effect to Selection Bias

Outcome	$ \begin{split} & [\hat{E}(\boldsymbol{X}'\hat{\boldsymbol{\gamma}} \text{CH} = 1) - \\ & \hat{E}(\boldsymbol{X}'\hat{\boldsymbol{\gamma}} \text{CH} = 0)] \div \\ & \widehat{\text{Var}}(\boldsymbol{X}'\hat{\boldsymbol{\gamma}}) \\ & (1) \end{split} $	$\widehat{\operatorname{Var}}(\hat{\epsilon})$ (2)	$E(\epsilon \text{CH} = 1)$ $-E(\epsilon \text{CH} = 0)^{\text{a}}$ (3)	$\operatorname{Cov}(\epsilon, \widetilde{\operatorname{CH}}) \div \operatorname{Var}(\widetilde{\operatorname{CH}})$ (4)	$\hat{\alpha}$ (5)	Implied Ratio ^b (6)
	A. $\hat{\alpha}$ Estimated	from the	e Catholic Eighth Controls ^c	Grade Subsample	e, Full S	et of
High school graduation (N=859)	.24	1.00	.24	.29	1.03 (.31)	3.55
College attendance (N=834)	.39	1.00	.39	.47	.67 (.16)	1.43
12th grade reading $(N=739)$.091	36.00	3.28	3.94	.33 (.62)	.08
12th grade math $(N=739)$.038	24.01	.91	1.09	1.14 (.46)	1.04

1151

Table 3
Community meetings and conflict victimization.

	Dependent variable: did you attend any community meetings in the past year?					
	IRCBP					
	2005 and 2	007	2007			
Explanatory variables	(1)	(2)	(3)	(4)		
Conflict victimization index	0.0704*** (0.0164)	0.0652*** (0.0165)	0.0775*** (0.0253)	0.0686*** (0.0246)		
Respondent is female		-0.1300*** (0.0084)		-0.1276*** (0.0126)		
Respondent age		0.0003		0.0002 (0.0005)		
Respondent has any		0.0590***		0.0466**		
education		(0.0108) 0.0928***		(0.0194) 0.0647***		
Traditional authority household		(0.0128)		(0.0194)		
1990 Household head had		(0.0128)		0.0205		
any education				(0.0199)		
1990 Household had a				0.1054***		
traditional leader				(0.0217)		
1990 Household had a community leader				-0.0067 (0.0169)		
R-squared	0.361	0.391	0.267	0.298		
Observations	10,471	10,471	5193	5193		
Enumeration area/Year fixed effects	Х	х	Х	Х		

Oster (2019): A Practical Applications of AET

"A common approach to evaluating robustness to omitted variable bias is to observe coefficient movements after inclusion of controls. This is informative only if selection on observables is informative about selection on unobservables. Although this link is known in theory (i.e. Altonji, Elder and Taber 2005), very few empirical papers approach this formally. I develop an extension of the theory which connects bias explicitly to coefficient stability. I show that it is necessary to take into account coefficient and R-squared movements. I develop a formal bounding argument. I show two validation exercises and discuss application to the economics literature."

Oster (2019): A Practical Applications of AET

Given a treatment T, define the proportional selection coefficient:

$$\delta = \frac{\textit{Cov}(\epsilon, T)}{\textit{Var}(\epsilon)} / \frac{\textit{Cov}(\mathbf{X}' \boldsymbol{\gamma}, T)}{\textit{Var}(\mathbf{X}' \boldsymbol{\gamma})}$$

Then:

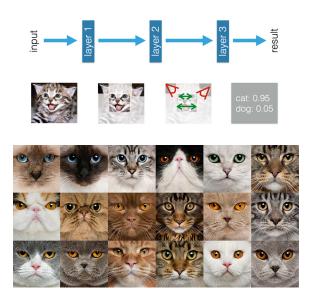
$$\beta^* \approx \tilde{\beta} - \delta \begin{bmatrix} \stackrel{\circ}{\beta} - \tilde{\beta} \end{bmatrix} \frac{R_{max} - \tilde{R}}{\tilde{R} - \stackrel{\circ}{R}} \xrightarrow{p} \beta$$

where:

- $\overset{\circ}{\beta}$ and $\overset{\circ}{R}$ are from a univariate regression of Y on T
- ullet $ilde{eta}$ and $ilde{R}$ are from a regression including controls
- R_{max} is the maximum achievable R^2 (possible 1)

Very Simple Machine Learning

What Is Machine Learning?



What Is Machine Learning?

A set of extensions to the standard econometric toolkit (read: "OLS") aimed at improving predictive accuracy, particularly w/ many variables

- Subset selection
- Shrinkage (LASSO, Ridge regression)
- Regression trees, random forests

Machine learning introduces new tools, relabels existing tools

- training data/sample/examples: your data
- features: independent variables, covariates

Main focus is on predicting Y, not testing hypotheses about β

 \Rightarrow ML "results" about β may not be robust

Can We Improve on OLS?

A standard linear model is not (always) the best way to predict Y:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

Can we improve on OLS?

- When p > N, OLS is not feasible
- When p is large relative to N, model may be prone to over-fitting
- OLS explains both structural and spurious relationships in data

Extensions to OLS identify "strongest" predictors of Y

Strength of correlation vs. (out-of-sample) robustness

Assumption: exact or approximate sparcity

Best Subset Selection

A **best subset selection** algorithm:

- For each k = 1, 2, ..., p
 - Fit all models containing exactly *k* covariates
 - ▶ Identify the "best" in terms of R²
- Choose the **best subset** based on cross-validation, adjusted R^2 , etc.
 - ▶ Need to address the fact that R^2 always increases with k

When p is large, best subset selection is not feasible

Alternatives to Best Subset Selection

A backward stepwise selection algorithm:

- Start with the "full" model containing p covariates
- At each step, drop one variable
 - \triangleright Choose the variable the minimizes decline in R^2
- Choose among "best" subsets of covariates thus identified (conditional on $k \le p$) using cross-validation, adjusted R^2 , etc.

Alternatives to Best Subset Selection

An even simpler **backward stepwise selection** algorithm:

- Start with the full model containing p covariates
- Drop covariates with p-values below 0.05
- Re-estimate, repeat until all covariates are statistically significant

Stepwise selection algorithm's may or may not yield optimal covariates

 When variables are not independent/orthogonal, how much one variable matters can depend on which other variables are included

Best Subset Selection

In OLS, we seek to minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Best subset selection can be expressed as: choose β to minimize

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^p I\left(\beta_j \neq 0\right) \leq s$$

where s is the number of regressors/predictors/features/covariates

- ⇒ But we solve it algorithmically, not analytically
- \Rightarrow When p is large, finding the best subset is hard

Ridge regression solves a closely related minimization problem:

$$\min_{\beta} \ \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^p \beta_j^2 \leq s$$

or, equivalently,

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

for some tuning parameter $\lambda \geq 0$

Ridge regression shrinks OLS coefficients toward zero

 Shrinkage is more or less proportional, so ridge regression does not identify a subset of regressors to include/retain in analysis/prediction

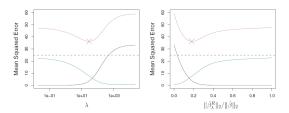


FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2} / \|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

Gauss-Markov Theorem: OLS is best linear unbiased estimator (BLUE)

• Estimators that are (a little) biased can generate better predictions

LASSO (Least Absolute Shrinkage and Selection Operator):

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

for some **tuning parameter** $\lambda \geq 0$

LASSO combines benefits of subset selection, ridge regression

- Less computationally intensive than subset selection
- ullet Sets some coefficients to 0 o identifies parsimonious model
- Better than ridge regression when most covariates are garbage

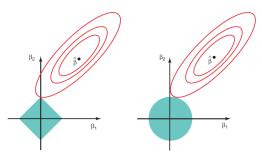


FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

LASSO constraint region has sharp corners \Rightarrow some coefficients set to 0

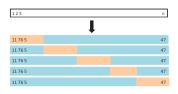
Three Approaches to Choosing λ (1/3)

Statistics based on in-sample fit:

- Function of *n*, RSS, plus degrees of freedom correction
 - ► Akaike Information Criterion (AIC)
 - ► Bayesian Information Criterion (BIC)
 - Extended Bayesian Information Criterion (EBIC)
- Default implemented by Stata's lasso2 command

These approaches tend to choose "too many" variables when n is small

Three Approaches to Choosing λ (2/3)



k-fold cross-validation

- Randomly sort observations in k groups
- For each group k, estimate LASSO on on rest of sample and predict MSE using observations in k; average to get $MSE(\lambda)$
- Iterate over λ values to choose optimal λ

Three Approaches to Choosing λ (3/3)

Belloni et al. (2012): alternative approach to choosing λ

- Relies on assumption of approximate sparsity
- Chooses λ iteratively based on data
- Allows for heteroskedasticity

Three approaches may generate very different sets of controls

- AIC may allow for too many controls when p is large
- Rigorous methods may suggest no controls are needed!
- Costs of too many/too few may vary across empirical contexts

Using Stata's lasso2 Command

. lasso2 Y A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

Knot	ID	Lambda	s	L1-Norm	EBIC	R-sq	Entered/removed
1	1	274.69944	1	0.00000	373.99443	0.0000	Added _cons.
2	2	250.29590	2	0.05750	376.74198	0.0127	Added A3.
3	3	228.06030	3	0.12916	379.14887	0.0268	Added B1.
4	5	189.33967	4	0.34741	376.64324	0.0641	Added B2.
5	7	157.19312	5	0.59797	374.32176	0.0991	Added A4.
6	9	130.50449	6	0.88119	372.19232	0.1319	Added A1.
7	14	81.96062	7	1.47908	365.26203	0.1834	Added C2.
8	15	74.67947	8	1.59405	368.76792	0.1907	Added C3.
9	16	68.04515	9	1.72958	372.12859	0.1985	Added A2.
10	17	62.00020	10	1.86039	375.70853	0.2054	Added B4.
11	18	56.49228	11	1.99359	379.40878	0.2117	Added C1.
12	22	38.93794	12	2.45073	380.21448	0.2292	Added C4.
13	50	2.87779	13	3.47700	380.98320	0.2464	Added B3.

Use 'long' option for full output. Type e.g. 'lasso2, lic(ebic)' to run the model selected > by EBIC.

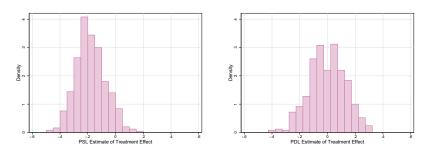
Using Stata's lasso2 Command

. lasso2, lic(ebic)

Use lambda=89.9516808401893 (selected by EBIC).

Selected	Lasso	Post-est OLS
A1 A3 A4 B1 B2	0.1420802 0.4510036 0.1905700 0.3653137 0.2291416	0.3854609 0.6742726 0.4034061 0.6000835 0.4171147
Partialled-out*		
_cons	0.1234630	0.0877426

Post-Double-LASSO Estimation



Using LASSO to address selection bias through post-double-selection:

- Using LASSO to select covariates that predict/explain Y leads to biased estimates of treatment effects of T (Belloni et al. 2014)
- PDL: use LASSO to predict Y and T, include all chosen controls