
ECON 626: Applied Microeconomics

Lecture 6:

Selection on Observables

Professors: Pamela Jakiela and Owen Ozier



Experimental and Quasi-Experimental Approaches

Approaches to causal inference (that we’ve discussed so far):

• The experimental ideal (i.e. RCTs)

• Natural experiments

• Difference-in-differences

• Instrumental variables

• Regression discontinuity

These approaches∗ reply on good-as-random variation in treatment;
identify impact on compliers irrespective of the nature of confounds

∗ With possible exception of diff-in-diff
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Causal Inference When All Else Fails

What can we do when we don’t have an experiment or quasi-experiment?

• Credibility revolution in economics nudges us to focus on questions
that can be answered through “credible” identification strategies

• Is this good for science? Is it good for humanity?

We should not restrict our attention to questions that can be answered
through randomized trials, natural experiments, or quasi-experiments!

• Research frontier: using best methods available, cond’l on question
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Causal Inference When All Else Fails

Non-experimental causal inference: explicit consideration of confounds

• Structural models (take a class from Sergio or Sebastian!)

• Matching estimators (just don’t use propensity scores)

• Directed acyclic graphs (DAGs)

• Coefficient stability

• Machine learning to select covariates
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Coefficient Stability



Motivating Example

Example: the impact of Catholic schools on high school graduation

All Students Catholic Elementary

No Controls w/ Controls No Controls w/ Controls

Probit coefficient 0.97 0.41 0.99 1.27

S.E. (0.17) (0.21) (0.24) (0.29)

Marginal effects [0.123] [0.052] [0.11] [0.088]

Pseudo R2 0.01 0.34 0.11 0.58

Source: Table 3 in Altonji, Elder, Taber (2005)
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A Framework for Thinking About Selection Bias

Y ∗ = αCH +W ′Γ

= αCH + X ′ΓX + ξ

= αCH + X ′γ + ε

where

• α is the causal impact of Catholic high school (CH)

• W is all covariates, and X is observed covariates

• ε is defined to be orthogonal to X s.t. Cov(X , ε) = 0

In this framework, why is the OLS estimate of α biased?
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How Severe Is Selection on Unobservables?

Consider a linear projection of CH onto X ′γ

CH = φ0 + φX ′γX
′γ + φεε

Typical identification assumption in OLS: φε = 0

• AET propose weaker proportional selection condition: φε = φX ′γ

Proportional selection is equivalent to following condition:

E [ε|CH = 1]− E [ε|CH = 0]

Var(ε)
=

E [X ′γ|CH = 1]− E [X ′γ|CH = 0]

Var(X ′γ)
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Let’s Assume. . .

1. Elements of X chosen at random W that determine W

2. X and W have many elements; none dominant predictors of Y

3. Additional (apparently hard to state) assumption:

“Roughly speaking, the assumption is that the regression of
CH∗ on Y ∗ - αCH is equal to the regression of the part of CH∗

that is orthogonal to X on the corresponding part of Y ∗ - αCH.”

where CH∗ is an unobserved latent variable that determines CH
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Bounding Selection on Unobservables

Define CH = X ′β + C̃H and re-write estimating equation:

Y ∗ = αC̃H + X ′(γ + αβ) + ε

This gives us a formula for selection bias:

plim α̂ = α +
Var(CH)

Var(C̃H)
(E [ε|CH = 1]− E [ε|CH = 0])

The bias is bounded under proportional selection assumption:

E [ε|CH = 1]−E [ε|CH = 0] = Var(ε) · E [X ′γ|CH = 1]− E [X ′γ|CH = 0]

Var(X ′γ)
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Some Restrictions Apply

“Note that when Var(ε) is very large relative to Var(X ′γ),
what one can learn is limited

. . .

even a small shift in (E [ε|CH = 1]− E [ε|CH = 0]) /Var(ε)
is consistent with a large bias in α.”

The degree of selection bias is bounded, but bounds may be wide:

bias <
Var(CH)

Var(C̃H)

(
Var(ε) · E [X ′γ|CH = 1]− E [X ′γ|CH = 0]

Var(X ′γ)

)
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Altonji, Elder, Taber (2005)
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Altonji, Elder, Taber (2005)
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Altonji, Elder, Taber (2005)
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Bellows and Miguel (2009)
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Oster (2019): A Practical Applications of AET

“A common approach to evaluating robustness to omitted variable bias is
to observe coefficient movements after inclusion of controls. This is

informative only if selection on observables is informative about selection
on unobservables. Although this link is known in theory (i.e. Altonji,

Elder and Taber 2005), very few empirical papers approach this formally.
I develop an extension of the theory which connects bias explicitly to
coefficient stability. I show that it is necessary to take into account
coefficient and R-squared movements. I develop a formal bounding

argument. I show two validation exercises and discuss application to the
economics literature.”
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Oster (2019): A Practical Applications of AET

Given a treatment T , define the proportional selection coefficient:

δ =
Cov(ε,T )

Var(ε)
/
Cov(X ′γ,T )

Var(X ′γ)

Then:

β∗ ≈ β̃ − δ
[
o

β − β̃
]
Rmax − R̃

R̃ −
o

R

p−→ β

where:

•
o

β and
o

R are from a univariate regression of Y on T

• β̃ and R̃ are from a regression including controls

• Rmax is the maximum achievable R2 (possible 1)
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Very Simple Machine Learning



What Is Machine Learning?
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What Is Machine Learning?

A set of extensions to the standard econometric toolkit (read: “OLS”)
aimed at improving predictive accuracy, particularly w/ many variables

• Subset selection

• Shrinkage (LASSO, Ridge regression)

• Regression trees, random forests

Machine learning introduces new tools, relabels existing tools

• training data/sample/examples: your data

• features: independent variables, covariates

Main focus is on predicting Y , not testing hypotheses about β

⇒ ML “results” about β may not be robust
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Can We Improve on OLS?

A standard linear model is not (always) the best way to predict Y :

Y = β0 + β1X1 + . . .+ βpXp + ε

Can we improve on OLS?

• When p > N, OLS is not feasible

• When p is large relative to N, model may be prone to over-fitting

• OLS explains both structural and spurious relationships in data

Extensions to OLS identify “strongest” predictors of Y

• Strength of correlation vs. (out-of-sample) robustness

Assumption: exact or approximate sparcity
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Best Subset Selection

A best subset selection algorithm:

• For each k = 1, 2, . . . , p

I Fit all models containing exactly k covariates

I Identify the “best” in terms of R2

• Choose the best subset based on cross-validation, adjusted R2, etc.

I Need to address the fact that R2 always increases with k

When p is large, best subset selection is not feasible
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Alternatives to Best Subset Selection

A backward stepwise selection algorithm:

• Start with the “full” model containing p covariates

• At each step, drop one variable

I Choose the variable the minimizes decline in R2

• Choose among “best” subsets of covariates thus identified
(conditional on k ≤ p) using cross-validation, adjusted R2, etc.
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Alternatives to Best Subset Selection

An even simpler backward stepwise selection algorithm:

• Start with the full model containing p covariates

• Drop covariates with p-values below 0.05

• Re-estimate, repeat until all covariates are statistically significant

Stepwise selection algorithm’s may or may not yield optimal covariates

• When variables are not independent/orthogonal, how much one
variable matters can depend on which other variables are included
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Best Subset Selection

In OLS, we seek to minimize:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

Best subset selection can be expressed as: choose β to minimize

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

I (βj 6= 0) ≤ s

where s is the number of regressors/predictors/features/covariates

⇒ But we solve it algorithmically, not analytically

⇒ When p is large, finding the best subset is hard
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LASSO and Ridge Regression

Ridge regression solves a closely related minimization problem:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

β2
j ≤ s

or, equivalently,

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j

for some tuning parameter λ ≥ 0

Ridge regression shrinks OLS coefficients toward zero

• Shrinkage is more or less proportional, so ridge regression does not
identify a subset of regressors to include/retain in analysis/prediction
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LASSO and Ridge Regression

Gauss-Markov Theorem: OLS is best linear unbiased estimator (BLUE)

• Estimators that are (a little) biased can generate better predictions
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LASSO and Ridge Regression

LASSO (Least Absolute Shrinkage and Selection Operator):

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj |

for some tuning parameter λ ≥ 0

LASSO combines benefits of subset selection, ridge regression

• Less computationally intensive than subset selection

• Sets some coefficients to 0 → identifies parsimonious model

• Better than ridge regression when most covariates are garbage
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LASSO and Ridge Regression

LASSO constraint region has sharp corners ⇒ some coefficients set to 0
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Three Approaches to Choosing λ (1/3)

Statistics based on in-sample fit:

• Function of n, RSS, plus degrees of freedom correction

I Akaike Information Criterion (AIC)

I Bayesian Information Criterion (BIC)

I Extended Bayesian Information Criterion (EBIC)

• Default implemented by Stata’s lasso2 command

These approaches tend to choose “too many” variables when n is small

UMD Economics 626: Applied Microeconomics Lecture 6: Selection on Observables, Slide 30



Three Approaches to Choosing λ (2/3)

k-fold cross-validation

• Randomly sort observations in k groups

• For each group k , estimate LASSO on on rest of sample and predict
MSE using observations in k ; average to get MSE(λ)

• Iterate over λ values to choose optimal λ
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Three Approaches to Choosing λ (3/3)

Belloni et al. (2012): alternative approach to choosing λ

• Relies on assumption of approximate sparsity

• Chooses λ iteratively based on data

• Allows for heteroskedasticity

Three approaches may generate very different sets of controls

• AIC may allow for too many controls when p is large

• Rigorous methods may suggest no controls are needed!

• Costs of too many/too few may vary across empirical contexts
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Using Stata’s lasso2 Command
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Using Stata’s lasso2 Command
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Post-Double-LASSO Estimation
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Using LASSO to address selection bias through post-double-selection:

• Using LASSO to select covariates that predict/explain Y leads to
biased estimates of treatment effects of T (Belloni et al. 2014)

• PDL: use LASSO to predict Y and T , include all chosen controls
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