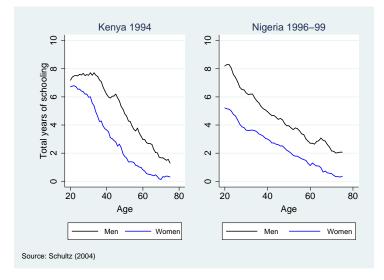
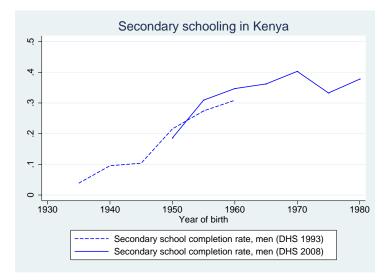
The Impact of Secondary Schooling in Kenya:

A Regression Discontinuity Analysis

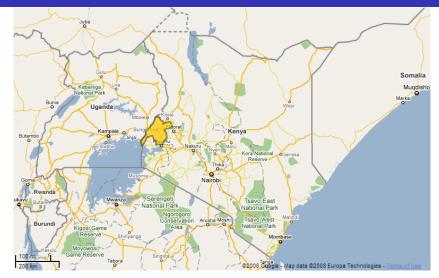

(Journal of Human Resources 2018)

Presented at UMD Econ-626 Oct 2019

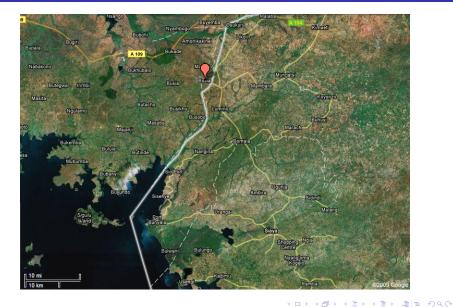
★ E ▶ ★ E ▶ E = りへ()


Motivation Setting First stage Results Conclusion

Trends in education: Kenya, Nigeria


三日 のへの

Kenyan secondary school completion by date of birth


EL OQO

Western Province, Kenya

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Samia and Bunyala - Former Busia District, Kenya

8th Grade - Kenya Certificate of Primary Education

December 30, 2008

"Out of the over 695,000 candidates who sat the KCPE examination, 350,000 candidates attained over 250 marks, making them eligible to join secondary school."

▲ E ▶ ▲ E ▶ E E ■ 9 Q Q

• Since 1985: 8 years primary, 4 years secondary. Eshiwani (1990)

▲ E ▶ ▲ E ▶ E E ■ 9 Q Q

- Since 1985: 8 years primary, 4 years secondary. Eshiwani (1990)
- At the end of 8th grade, students take the KCPE; The KCPE is the chief determinant of admission to secondary school. Glewwe, Kremer, and Moulin (2009)

▲ 臣 ▶ ▲ 臣 ▶ 三目目 - のへ()

- Since 1985: 8 years primary, 4 years secondary. Eshiwani (1990)
- At the end of 8th grade, students take the KCPE; The KCPE is the chief determinant of admission to secondary school. Glewwe, Kremer, and Moulin (2009)
- A score of 50% or higher is considered "passing," official letter of admission to public secondary is rare below cutoff. (alternatives include private, Ugandan, and vocational/polytechnic.) Aduda (2008); Akolo (2008)

A B A B A B B B B A Q A

- Since 1985: 8 years primary, 4 years secondary. Eshiwani (1990)
- At the end of 8th grade, students take the KCPE; The KCPE is the chief determinant of admission to secondary school. Glewwe, Kremer, and Moulin (2009)
- A score of 50% or higher is considered "passing," official letter of admission to public secondary is rare below cutoff. (alternatives include private, Ugandan, and vocational/polytechnic.) Aduda (2008); Akolo (2008)
- Initial cutoffs for all schools: centralized by Ministry of Education Several rounds of decisions take place, esp. for higher quality schools, but no government cutoff exists below the 50% mark – at least for boys.

- Since 1985: 8 years primary, 4 years secondary. Eshiwani (1990)
- At the end of 8th grade, students take the KCPE; The KCPE is the chief determinant of admission to secondary school. Glewwe, Kremer, and Moulin (2009)
- A score of 50% or higher is considered "passing," official letter of admission to public secondary is rare below cutoff. (alternatives include private, Ugandan, and vocational/polytechnic.) Aduda (2008); Akolo (2008)
- Initial cutoffs for all schools: centralized by Ministry of Education Several rounds of decisions take place, esp. for higher quality schools, but no government cutoff exists below the 50% mark – at least for boys.
- 1985-2000: 7-subject test; 2001-onward: 5-subject test (100 pts/subject); (Kremer, Miguel, and Thornton 2009; Orlale 2000)

Kenyan Life Panel Survey (Miguel, et al.)

< 三 × 三 × 三 × < 三 ×

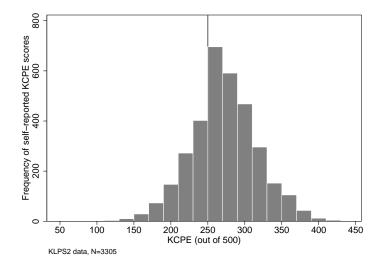
Kenyan Life Panel Survey (Miguel, et al.) Round 2 (2007-2009)

• Sampled from population of students in standards 2-7 in 73 rural (deworming) primary schools in 1998 (Miguel and Kremer Econometrica 2004)

< E ▶ < E ▶ E = のQ @

- Kenyan Life Panel Survey (Miguel, et al.) Round 2 (2007-2009)
 - Sampled from population of students in standards 2-7 in 73 rural (deworming) primary schools in 1998 (Miguel and Kremer Econometrica 2004)
 - 7,530 of roughly 22,000 pupils sampled KLPS1: 2003-2005 KLPS2: 2007-2009 (Baird, Hamory, and Miguel 2008)

Kenyan Life Panel Survey (Miguel, et al.) Round 2 (2007-2009)


- Sampled from population of students in standards 2-7 in 73 rural (deworming) primary schools in 1998 (Miguel and Kremer Econometrica 2004)
- 7,530 of roughly 22,000 pupils sampled KLPS1: 2003-2005 KLPS2: 2007-2009 (Baird, Hamory, and Miguel 2008)
- KLPS2 effective tracking rate: >84%; In total: 5,084 repondents, two thirds of whom take the KCPE

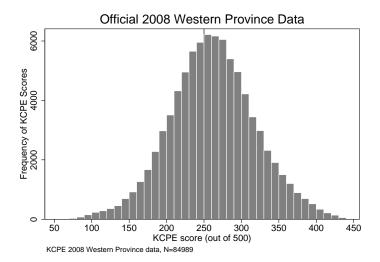
Data: Summary statistics among those reporting a KCPE score

Characteristic	Mean	Std. Dev.	Ν		
Panel A: Respondent Characteristics					
Age	22.05	(2.57)	3305		
Female	0.45	(0.50)	3305		
Father's level of education	10.06	(4.99)	2953		
Mother's level of education	6.61	(4.18)	3049		
Panel B: First Stage: Education Characteristics					
Self-reported KCPE Score (out of 500)	254.49	(52.23)	3305		
Years of Education	10.14	(2.09)	3305		
Still attending school	0.30	(0.46)	3305		
Any secondary schooling	0.62	(0.49)	3305		
Complete (4y) secondary schooling	0.37	(0.48)	3305		
Post-secondary schooling	0.04	(0.18)	3305		

< 三 × 三 × 三 × < 三 ×

Self-reported score distribution

三日 のへの


Self-reported score distribution: McCrary manipulation test

Generated using the routine developed by McCrary (2008).

▶ ΞΙΞ • • • • •

True administrative distribution from 2008

三日 のへの

Possible explanation: Re-taking

KLPS1 (2003-05) survey asked how many times respondents took the KCPE. Among oldest two cohorts reporting ever taking KCPE:

KCPE attempts	N	Percent
1	656	86.66
2	100	13.21
3	1	0.13
Total:	881	

□ > * ミ > * ミ > ミ = * の < @

Possible explanation: Re-taking

KLPS1 (2003-05) survey asked how many times respondents took the KCPE. Among oldest two cohorts reporting ever taking KCPE:

KCPE attempts	Ν	Percent
1	656	86.66
2	100	13.21
3	1	0.13
Total:	881	

Re-taking is costly, however, mainly because it requires repeating Standard 8:

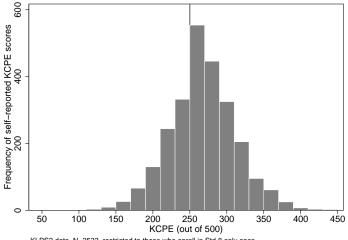
	Attempts			
Repeat Std 8?	1x	2x	3x	Total
No	639	2	0	641
Yes	17	98	1	116
Total	656	100	1	757

◆□ > ◆□ > ◆臣 > ◆臣 > 臣目目 のへで

Possible explanation: Re-taking

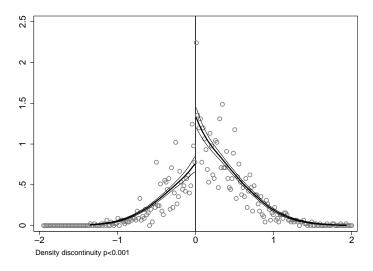
KLPS1 (2003-05) survey asked how many times respondents took the KCPE. Among oldest two cohorts reporting ever taking KCPE:

KCPE attempts	Ν	Percent
1	656	86.66
2	100	13.21
3	1	0.13
Total:	881	


Re-taking is costly, however, mainly because it requires repeating Standard 8:

	Attempts			
Repeat Std 8?	1x	2x	3x	Total
No	639	2	0	641
Yes	17	98	1	116
Total	656	100	1	757

Even without the survey question, a good measure of re-taking ($R^2 > 0.8$).


< □ > < □ > < Ξ > < Ξ > < Ξ = < 0 < 0

Self-reported score distribution, non-repeaters

三日 のへの

Self-reported score distribution: McCrary manipulation test, non-repeaters

Generated using the routine developed by McCrary (2008).

三日 のへで

Gathering administrative data

Administrative data

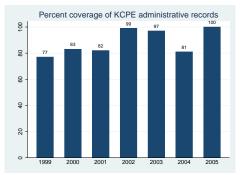
Kenya Certificate of Primary Education Official data from Government of Kenya

▶ ★ 분 ▶ 분 = 9 Q Q

< E

Administrative data

Kenya Certificate of Primary Education Official data from Government of Kenya


• Exam results from primary schools and district headquarters 1999-2005: 17,384 KCPE scores Samia, Bunyala Districts and neighboring schools

1 3 1 3 1 3 1 3 A A

Administrative data

Kenya Certificate of Primary Education Official data from Government of Kenya

- Exam results from primary schools and district headquarters 1999-2005: 17,384 KCPE scores Samia, Bunyala Districts and neighboring schools
- 88% coverage in original schools/years, based on hardcopy availability:

EL OQO

Name matching: challenges

A CONTRACTOR OF THE OWNER OF	ENINIS	BusiA.
	box	Busia.
bear Sir Madam,		
Sincerely yours Lenis		

School(s), Year(s), Names (with soundex-like algorithm customized to Western Kenya):

▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

School(s), Year(s), Names (with soundex-like algorithm customized to Western Kenya):

Spelling:	FEDINANT FEDNAND FEDNANT FEDNARND	FEDYNANT FERDINAND FERDNAND FERDNANT	ODUOR ODUORI ODUORY	ODWOR ODWORI ODWORY
		1		

Order, subset: WILLKISTER NABWIRE = NABWIRE OMONDI WILKISTA

Density: OJIAMBO, ODUOR, OUMA, WANDERA, JUMA: each exceeds 3% of records. (compare: of surnames, only SMITH exceeds 1% of 1990 US Census records.)

School(s), Year(s), Names (with soundex-like algorithm customized to Western Kenya):

Spelling:	FEDINANT FEDNAND FEDNANT FEDNARND	FEDYNANT FERDINAND FERDNAND FERDNANT	ODUOR ODUORI ODUORY	ODWOR ODWORI ODWORY
Order, subset:	WILLKISTER N	NABWIRE = NA	BWIRE OMOI	NDI WILKISTA
Density:				MA: each exceeds 3% of records. 1% of 1990 US Census records.)

Among respondents giving a test score in the survey: found 76.7%

-

Matched Scores	N	Percent
Exactly one matched score	2273	68.77
<u>Two</u> (different years: retaking)	263	7.96
Unmatched	769	23.27

▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

School(s), Year(s), Names (with soundex-like algorithm customized to Western Kenya):

Spelling:	FEDINANT FEDNAND FEDNANT FEDNARND	FEDYNANT FERDINAND FERDNAND FERDNANT	ODUOR ODUORI ODUORY	ODWOR ODWORI ODWORY
Order, subset:	WILLKISTER N	NABWIRE = NA	BWIRE OMOI	NDI WILKISTA
Density:				MA: each exceeds 3% of records. % of 1990 US Census records.)

Among respondents giving a test score in the survey: found 76.7%

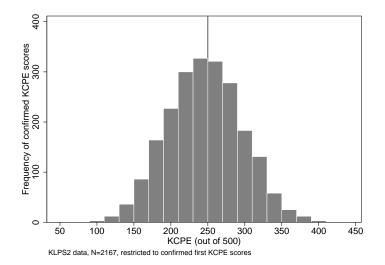
Matched Scores	N	Percent
Exactly one matched score	2273	68.77
<u>Two</u> (different years: retaking)	263	7.96
Unmatched	769	23.27

Can usually tell whether matched score was first attempt.

<□> < => < => < => < =| = <0 < 0

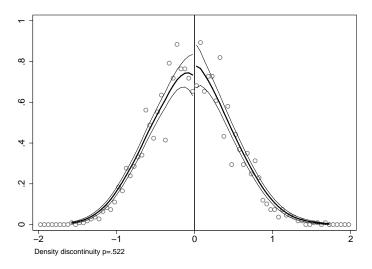
School(s), Year(s), Names (with soundex-like algorithm customized to Western Kenya):

Spelling:	FEDINANT FEDNAND FEDNANT FEDNARND	FEDYNANT FERDINAND FERDNAND FERDNANT	ODUOR ODUORI ODUORY	ODWOR ODWORI ODWORY	
Order, subset:	WILLKISTER NABWIRE = NABWIRE OMONDI WILKISTA				
Density:	OJIAMBO, ODUOR, OUMA, WANDERA, JUMA: each exceeds 3% of records. (compare: of surnames, only SMITH exceeds 1% of 1990 US Census records.)				


Among respondents giving a test score in the survey: found 76.7%

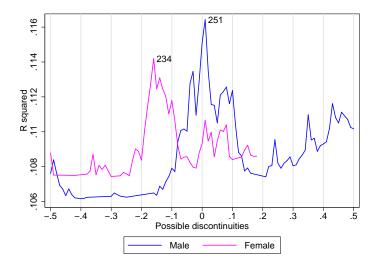
Matched Scores	N	Percent
Exactly one matched score	2273	68.77
<u>Two</u> (different years: retaking)	263	7.96
Unmatched	769	23.27

Can usually tell whether matched score was first attempt. First-attempt scores: 2167


< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Confirmed first score distribution

三日 のへの


Confirmed first score distribution: McCrary manipulation test

Generated using the routine developed by McCrary (2008).

₹ ∃ < € =

Card-Mas-Rothstein (structural break) discontinuity search

Kane (2003), Chay, McEwan, and Urquiola (2005), inter alia

三日 のへの

Re-centered first stage regressions

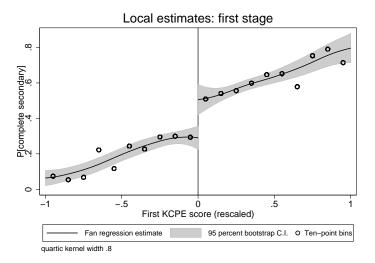
Center womens' scores at 234, mens' at 251:

< 三 × 三 × 三 × < 三 ×

Re-centered first stage regressions

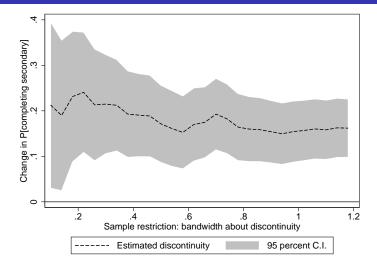
Center womens' scores at 234, mens' at 251:

0 4100	Tour years or se	contain y cont				
Regressors:	Self-reported	Con	nfirmed first scores			
	(1)	(2)	(3)	(4)		
$KCPE \ge cutoff$	0.1***	0.153***	0.17***	0.129***		
	(0.023)	(0.031)	(0.043)	(0.049)		
KCPE centered at cutoff	0.181***	0.282***	0.325***	0.218***		
	(0.04)	(0.035)	(0.048)	(0.056)		
$(KCPE \ge cutoff) \times KCPE$	0.161***	0.015	-0.082	0.161*		
	(0.05)	(0.055)	(0.069)	(0.09)		
Female	-0.108***	-0.1***				
	(0.017)	(0.02)				
Constant	0.233***	0.382***	0.392***	0.265***		
	(0.018)	(0.023)	(0.031)	(0.031)		
Restriction			Male	Female		
Discontinuity F-stat	18.356	24.550	15.921	6.973		
Observations	3305	2167	1203	964		
R ²	0.132	0.193	0.192	0.168		

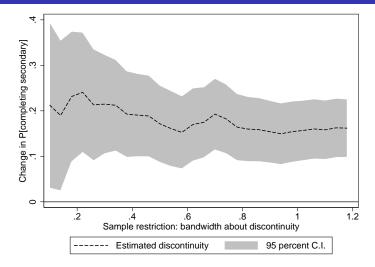

Outcome: Four years of secondary schooling

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

First stage (Fan regression): appropriate bandwidth / polynomial order?


★ E ▶ ★ E ▶ E = りへで

First stage (Fan regression): appropriate bandwidth / polynomial order?


EL OQO

Discontinuity as a function of bandwidth

三日 のへの

Discontinuity as a function of bandwidth

Tradeoff between power and potential misspecification.

三日 のへの

Polynomial order, controls

Outcome: Four y	Outcome: Four years of secondary schooling; sample restriction 0 \pm 0.8									
-	(1)	(2)	(3)	(4)	(5)	(6)				
$KCPE \geq cutoff$	0.16***	0.17***	0.17***	0.21***	0.16***	0.12*				
	(0.04)	(0.05)	(0.05)	(0.06)	(0.06)	(0.07)				
KCPE centered at cutoff	0.27***	0.07	0.3***	0.07	0.24***	0.06				
	(0.06)	(0.18)	(0.09)	(0.31)	(0.08)	(0.26)				
$(KCPE \geq cutoff) \times KCPE$	0.02	0.19	-0.02	-0.03	-0.006	0.5				
	(0.09)	(0.3)	(0.11)	(0.41)	(0.14)	(0.48)				
Constant	0.33***	0.41***	0.39***	0.38**	0.27***	0.32				
	(0.02)	(0.14)	(0.04)	(0.18)	(0.04)	(0.19)				
Restriction			Male	Male	Female	Female				
Piecewise Quadratic	No	Yes	No	Yes	No	Yes				
Controls	No	Yes	No	Yes	No	Yes				
Discontinuity F-stat	19.46	14.86	11.13	10.92	7.50	2.71				
Observations	1943	1943	1064	1064	879	879				
	0.14	0.23	0.14	0.24	0.12	0.2				

Controls: age, gender, parents' education, cohort dummies.

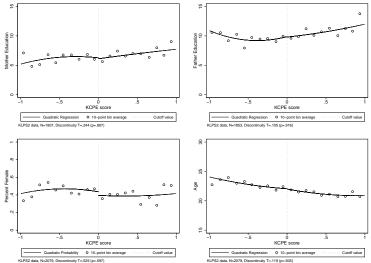
▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

Polynomial order, controls

Outcome: Four y	Outcome: Four years of secondary schooling; sample restriction 0 \pm 0.8									
	(1)	(2)	(3)	(4)	(5)	(6)				
$KCPE \ge cutoff$	0.16***	0.17***	0.17***	0.21***	0.16***	0.12*				
	(0.04)	(0.05)	(0.05)	(0.06)	(0.06)	(0.07)				
KCPE centered at cutoff	0.27***	0.07	0.3***	0.07	0.24***	0.06				
	(0.06)	(0.18)	(0.09)	(0.31)	(0.08)	(0.26)				
$(KCPE \ge cutoff) \times KCPE$	0.02	0.19	-0.02	-0.03	-0.006	0.5				
	(0.09)	(0.3)	(0.11)	(0.41)	(0.14)	(0.48)				
Constant	0.33***	0.41***	0.39***	0.38**	0.27***	0.32				
	(0.02)	(0.14)	(0.04)	(0.18)	(0.04)	(0.19)				
Restriction			Male	Male	Female	Female				
Piecewise Quadratic	No	Yes	No	Yes	No	Yes				
Controls	No	Yes	No	Yes	No	Yes				
Discontinuity F-stat	19.46	14.86	11.13	10.92	7.50	2.71				
Observations	1943	1943	1064	1064	879	879				
	0.14	0.23	0.14	0.24	0.12	0.2				

Controls: age, gender, parents' education, cohort dummies.

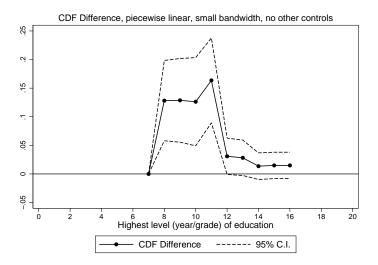
Gelbach (2009) decomposition suggests that the *coefficient change* for women is driven by the controls; the VCV matrix suggests that the piecewise quadratic in the running variable is responsible for the change in SE.


Polynomial order, controls

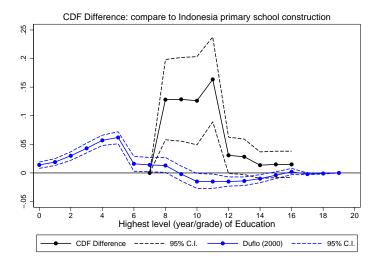
Outcome: Four y	Outcome: Four years of secondary schooling; sample restriction 0 \pm 0.8									
	(1)	(2)	(3)	(4)	(5)	(6)				
$KCPE \ge cutoff$	0.16***	0.17***	0.17***	0.21***	0.16***	0.12*				
	(0.04)	(0.05)	(0.05)	(0.06)	(0.06)	(0.07)				
KCPE centered at cutoff	0.27***	0.07	0.3***	0.07	0.24***	0.06				
	(0.06)	(0.18)	(0.09)	(0.31)	(0.08)	(0.26)				
$(KCPE \ge cutoff) \times KCPE$	0.02	0.19	-0.02	-0.03	-0.006	0.5				
	(0.09)	(0.3)	(0.11)	(0.41)	(0.14)	(0.48)				
Constant	0.33***	0.41***	0.39***	0.38**	0.27***	0.32				
	(0.02)	(0.14)	(0.04)	(0.18)	(0.04)	(0.19)				
Restriction			Male	Male	Female	Female				
Piecewise Quadratic	No	Yes	No	Yes	No	Yes				
Controls	No	Yes	No	Yes	No	Yes				
Discontinuity F-stat	19.46	14.86	11.13	10.92	7.50	2.71				
Observations	1943	1943	1064	1064	879	879				
	0.14	0.23	0.14	0.24	0.12	0.2				

Controls: age, gender, parents' education, cohort dummies.

Gelbach (2009) decomposition suggests that the *coefficient change* for women is driven by the controls; the VCV matrix suggests that the piecewise quadratic in the running variable is responsible for the change in SE. AIC suggests the piecewise linear specification is best for this and a range of other similar window sizes.


Validity: smooth regressors at discontinuity

KLPS2 data, N=2079, Discontinuity T=.529 (p=.597)


<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

CDF difference in years of educational attainment

三日 のへの

CDF difference in years of educational attainment - compare Duflo (2000)

Owen Ozier Impact of Secondary Schooling in Kenya 29/51

ELE DQA

Data: Summary statistics, restricted to KCPE scores inside ± 0.8 window

Characteristic	Mean	Std. Dev.	N
Panel C: Outcome variables			
Vocabulary test (standardized)	0.55	(0.69)	1923
Raven's matrices (standardized)	0.35	(0.91)	1904
Standardized vocabulary $+$ Raven's	0.51	(0.76)	1904
Still attending school male	0.33	(0.47)	1058
Still attending school male, oldest two cohorts	0.13	(0.34)	375
Formally employed male	0.21	(0.41)	1058
Formally employed male, oldest two cohorts	0.34	(0.47)	375
Self-employed (non-farm) male	0.10	(0.30)	1058
Self-employed (non-farm) male, oldest two cohorts	0.16	(0.37)	375
Pregnant by 18 female, at least 18 years old	0.09	(0.29)	853
First child survival female	0.94	(0.23)	356

● ▲ 토 ▶ 토 ㅌ • ● ●

< 31

• OLS:

$$Y_i = \pi_0 + \pi_1 Sec_i + \pi_2 K_i + \pi_3 X_i + \varepsilon_i$$
(1)

• OLS:

$$Y_i = \pi_0 + \pi_1 Sec_i + \pi_2 K_i + \pi_3 X_i + \varepsilon_i$$
(1)

• Regression Discontinuity:

$$\tau_{FRD} = \frac{\lim_{k \downarrow c} E[Y|K = k] - \lim_{k \uparrow c} E[Y|K = k]}{\lim_{k \downarrow c} E[Sec|K = k] - \lim_{k \uparrow c} E[Sec|K = k]}$$
(2)

• OLS:

$$Y_i = \pi_0 + \pi_1 Sec_i + \pi_2 K_i + \pi_3 X_i + \varepsilon_i$$
(1)

• Regression Discontinuity:

$$\tau_{FRD} = \frac{\lim_{k \downarrow c} E[Y|K = k] - \lim_{k \uparrow c} E[Y|K = k]}{\lim_{k \downarrow c} E[Sec|K = k] - \lim_{k \uparrow c} E[Sec|K = k]}$$
(2)

• RD is equivalent to IV (2SLS) when bandwidths and polynomial orders are the same across both equations (Imbens and Lemieux J.Econometrics 2008; Lee and Lemieux JEL 2010)

< E ▶ < E ▶ E H つへ()

Binary outcomes: IV Probit may be appropriate when first stage is linear but second is not; is not consistent if first stage is also nonlinear.

< E ▶ < E ▶ E = のQ (~

Binary outcomes: IV Probit may be appropriate when first stage is linear but second is not; is not consistent if first stage is also nonlinear.

Bivariate Probit (Maddala 1983, Wooldridge 2002, Greene 2007, etc.):

$$Sec_{i} = \mathbb{1} \left(\delta_{0} + \delta_{1}Above_{i} + \delta_{2}K_{i} + \delta_{3}K_{i} \cdot Above_{i} + \delta_{4}X_{i} + \tau_{i} > 0 \right)$$
(3)

$$Y_{i} = \mathbb{1} \left(\phi_{0} + \phi_{1} Sec_{i} + \phi_{2} K_{i} + \phi_{3} K_{i} \cdot Above_{i} + \phi_{4} X_{i} + \omega_{i} > 0 \right)$$

$$\tag{4}$$

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

Binary outcomes: IV Probit may be appropriate when first stage is linear but second is not; is not consistent if first stage is also nonlinear.

Bivariate Probit (Maddala 1983, Wooldridge 2002, Greene 2007, etc.):

$$Sec_{i} = \mathbb{1} \left(\delta_{0} + \delta_{1}Above_{i} + \delta_{2}K_{i} + \delta_{3}K_{i} \cdot Above_{i} + \delta_{4}X_{i} + \tau_{i} > 0 \right)$$
(3)

$$Y_{i} = \mathbb{1} \left(\phi_{0} + \phi_{1} Sec_{i} + \phi_{2} K_{i} + \phi_{3} K_{i} \cdot Above_{i} + \phi_{4} X_{i} + \omega_{i} > 0 \right)$$

$$\tag{4}$$

$$\begin{bmatrix} \tau_i \\ \omega_i \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right)$$
(5)

▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

Binary outcomes: IV Probit may be appropriate when first stage is linear but second is not; is not consistent if first stage is also nonlinear.

Bivariate Probit (Maddala 1983, Wooldridge 2002, Greene 2007, etc.):

$$Sec_{i} = \mathbb{1} \left(\delta_{0} + \delta_{1}Above_{i} + \delta_{2}K_{i} + \delta_{3}K_{i} \cdot Above_{i} + \delta_{4}X_{i} + \tau_{i} > 0 \right)$$
(3)

$$Y_{i} = \mathbb{1} \left(\phi_{0} + \phi_{1} Sec_{i} + \phi_{2} K_{i} + \phi_{3} K_{i} \cdot Above_{i} + \phi_{4} X_{i} + \omega_{i} > 0 \right)$$

$$(4)$$

$$\begin{bmatrix} \tau_i \\ \omega_i \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$
(5)

Angrist (1991) argues that even when this is the true DGP, 2SLS is often almost as good.

▶ ★ E ▶ ★ E ▶ E = 9 Q Q

Binary outcomes: IV Probit may be appropriate when first stage is linear but second is not; is not consistent if first stage is also nonlinear.

Bivariate Probit (Maddala 1983, Wooldridge 2002, Greene 2007, etc.):

$$Sec_{i} = \mathbb{1}\left(\delta_{0} + \delta_{1}Above_{i} + \delta_{2}K_{i} + \delta_{3}K_{i} \cdot Above_{i} + \delta_{4}X_{i} + \tau_{i} > 0\right)$$
(3)

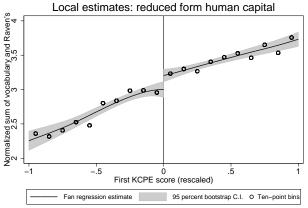
$$Y_{i} = \mathbb{1} \left(\phi_{0} + \phi_{1} Sec_{i} + \phi_{2} K_{i} + \phi_{3} K_{i} \cdot Above_{i} + \phi_{4} X_{i} + \omega_{i} > 0 \right)$$

$$(4)$$

$$\begin{bmatrix} \tau_i \\ \omega_i \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$
(5)

Angrist (1991) argues that even when this is the true DGP, 2SLS is often almost as good.

Simulations suggest that IV probit and bivariate probit have better power than 2SLS; while Wald tests for bivariate probit may be slightly incorrectly sized in small samples, likelihood ratio tests appear correctly sized.


<□> < => < => < => < =| = <0 < 0

Human Capital I

Outcome:	Mean ef	fect, vocabular	y and Raven's	Matrices	Vocabulary	Raven's
	OLS	2SLS	OLS	2SLS	2SLS	2SLS
Completing Std 12	0.612***	0.67**	0.584***	0.595**	0.644**	0.399
	(0.032)	(0.282)	(0.033)	(0.301)	(0.275)	(0.433)
KCPE centered at cutoff	0.663***	0.637***	0.607***	0.602***	0.608***	0.447*
	(0.085)	(0.168)	(0.086)	(0.17)	(0.16)	(0.232)
$(KCPE \ge cutoff) \times KCPE$	-0.311**	-0.311**	-0.302**	-0.302**	-0.468***	-0.061
	(0.127)	(0.127)	(0.124)	(0.123)	(0.112)	(0.175)
Female	-0.19***	-0.183***	-0.222***	-0.22***	-0.136***	-0.25** [*] *
	(0.029)	(0.042)	(0.03)	(0.051)	(0.047)	(0.073)
Constant	2.980***	2.953***	3.675***	3.669***	3.550***	2.877***
	(0.031)	(0.14)	(0.204)	(0.274)	(0.219)	(0.389)
Controls	No	No	Yes	Yes	Yes	Yes
Discontinuity F-stat		20.496		23.050	23.050	23.050
Observations	1923	1923	1923	1923	1923	1923
R ²	0.331	0.33	0.345	0.345	0.404	0.153

Note: OLS without KCPE control = 1.226, SD=0.027 (Vocabulary 1.272, Raven's 0.884)

Human capital: local linear regression

quartic kernel width 1.2

EL OQO

Human Capital II - older cohorts

Outcome:	Mean eff	ect, vocabulary	and Raven's	Matrices	Vocabulary	Raven's
	OLS	2SLS	OLS	2SLS	2SLS	2SLS
Completing Std 12	0.689***	0.685*	0.648***	0.62	0.958**	0.129
	(0.049)	(0.385)	(0.05)	(0.429)	(0.379)	(0.569)
KCPE centered at cutoff	0.653***	0.655***	0.622***	0.634***	0.475**	0.636**
	(0.128)	(0.254)	(0.126)	(0.226)	(0.219)	(0.284)
$(KCPE \ge cutoff) \times KCPE$	-0.122	-0.122	-0.117	-0.119	-0.359*	0.151
	(0.214)	(0.218)	(0.21)	(0.212)	(0.196)	(0.275)
Female	-0.191***	-0.191***	-0.21***	-0.214**	-0.1	-0.276**
	(0.047)	(0.071)	(0.048)	(0.088)	(0.074)	(0.119)
Constant	2.933***	2.935***	3.431***	3.481***	2.827***	3.271***
	(0.059)	(0.226)	(0.353)	(0.861)	(0.708)	(1.190)
Controls	No	No	Yes	Yes	Yes	Yes
Discontinuity F-stat		10.783		9.041	9.041	9.041
Observations	693	693	693	693	693	693
R ²	0.42	0.42	0.428	0.428	0.452	0.184

Human Capital III - not a decay story

Is there a decline of this human capital measure after leaving school?

< E ▶ < E ▶ E H つへ()

Human Capital III - not a decay story

Is there a decline of this human capital measure after leaving school?

Outcome:	Mean effect,						
			Raven's Matric				
Restriction:		at 8th grade	Left school a				
		cohorts	Younger fo	ur cohorts			
Years since last in school	0.016**	0.058***	0.026*	0.094***			
	(0.008)	(0.016)	(0.014)	(0.02)			
Female		-0.267***		-0.28***			
		(0.039)		(0.053)			
Constant	-0.298***	1.180***	-0.353***	1.299***			
	(0.048)	(0.249)	(0.063)	(0.366)			
Controls	No	Yes	No	Yes			
Observations	1419	1419	819	819			
R^2	0.003	0.056	0.004	0.069			

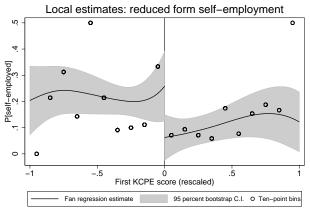
< E ▶ < E ▶ E H つへ()

Self-Employment I

		P[Self-en	ployed]	
	OLS	ÖLS	2SLS	2SLS
Completing Std 12	-0.104***	-0.12**	-0.502*	-0.601*
	(0.04)	(0.049)	(0.273)	(0.359)
KCPE centered at cutoff	-0.169	-0.168	0.043	0.009
	(0.111)	(0.114)	(0.217)	(0.204)
$(KCPE \ge cutoff) \times KCPE$	0.212	0.212	0.181	0.19
	(0.185)	(0.184)	(0.207)	(0.207)
Constant	0.182***	0.153	0.403**	1.042
	(0.043)	(0.284)	(0.17)	(0.764)
Controls	No	Yes	No	Yes
Discontinuity F-stat			9.031	5.986
Observations	378	378	378	378
R ²	0.038	0.051		

(Restriction: male, oldest two cohorts)

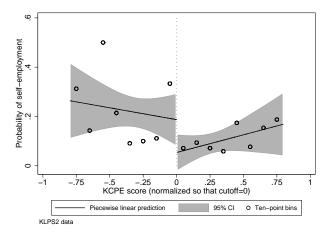
Note: OLS without KCPE control = -0.127, SD=0.037


Self-Employment II

Outcome	Estimation								
	(1) OLS	(2) OLS	(3) IVP	(4) IVP	(5) BVP	(6) BVP	(7) 2SLS	(8) 2SLS	
P[Self-employed]	-0.104*** (0.040)	-0.12** (0.049)	-0.459*** (0.092)	-0.516*** (0.103)	-0.464*** (0.147)	-0.347** (0.136)	-0.502* (0.273)	-0.601* (0.359)	
Controls	No	Yes	No	Yes	No	Yes	No	Yes	
Discontinuity F-stat			9.031	5.986	9.031	5.986	9.031	5.986	
Observations	378	378	378	378	378	378	378	378	

(Only coefficient on secondary schooling is shown.)

▲ 문 ▶ ▲ 문 ▶ 문 범 = ∽ Q ()


Self-employment: local linear regression

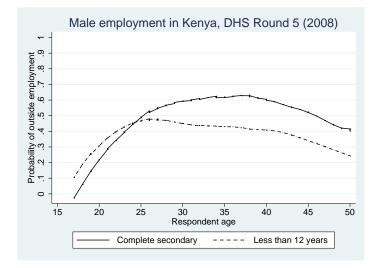
quartic kernel width 1.4 ; restricted to male respondents in oldest two cohorts

三日 のへの

Self-employment: reduced form

< E

三日 のへで


Shift away from self-employment

Shift from low-skill to higher-skill occupations

Employment by age in Kenya

三日 のへの

Employment I

	P[Employed]				
	OLS	OLS	2SLS	2SLS	
Completing Std 12	-0.032	-0.054**	0.083	0.216	
	(0.028)	(0.026)	(0.288)	(0.269)	
KCPE centered at cutoff	-0.016	0.113	-0.072	-0.022	
	(0.072)	(0.073)	(0.163)	(0.165)	
$(KCPE \ge cutoff) \times KCPE$	-0.085	-0.119	-0.08	-0.102	
	(0.113)	(0.11)	(0.116)	(0.118)	
Constant	0.244***	-0.936***	0.189	-0.923***	
	(0.027)	(0.11)	(0.143)	(0.115)	
Controls	No	Yes	No	Yes	
Discontinuity F-stat			11.126	11.952	
Observations	1064	1064	1064	1064	
R ²	0.007	0.106		0.016	

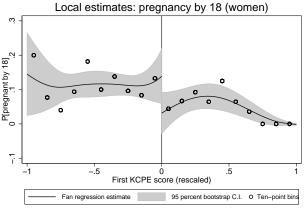
(Restriction: male)

Note: OLS without KCPE control = -0.050, SD=0.025

Employment II

	P[Employed]					
	OLS	OLS	2SLS	2SLS		
Completing Std 12	-0.036	0.036	0.291	0.549		
	(0.055)	(0.058)	(0.352)	(0.486)		
KCPE centered at cutoff	0.116	0.195	-0.059	0.006		
	(0.133)	(0.137)	(0.233)	(0.236)		
$(KCPE \ge cutoff) \times KCPE$	-0.262	-0.27	-0.236	-0.247		
	(0.224)	(0.225)	(0.234)	(0.252)		
Constant	0.405***	-0.761**	0.223	-1.710*		
	(0.054)	(0.329)	(0.197)	(0.989)		
Controls	No	Yes	No	Yes		
Discontinuity F-stat			9.031	5.986		
Observations	378	378	378	378		
R^2	0.005	0.054				

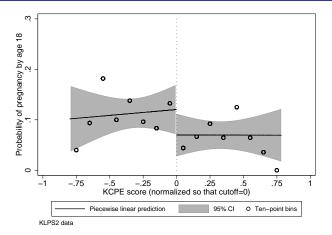
(Restriction: male, oldest two cohorts)


Note: OLS without KCPE control = -0.039, SD=0.049

Employment III

Outcome	Estimation							
	(1) OLS	(2) OLS	(3) IVP	(4) IVP	(5) BVP	(6) BVP	(7) 2SLS	(8) 2SLS
P[Formally employed]	-0.036 (0.055)	0.036 (0.058)	0.263 (0.253)	0.427** (0.216)	0.240 (0.192)	0.359** (0.171)	0.291 (0.352)	0.549 (0.486)
Controls	No	Yes	No	Yes	No	Yes	No	Yes
Discontinuity F-stat			9.031	5.986	9.031	5.986	9.031	5.986
Observations	378	378	378	378	378	378	378	378

(Only coefficient on secondary schooling is shown.)


Pregnancy by 18: local estimates

quartic kernel width 1

三日 のへの

Pregnancy by 18: reduced form

< E

三日 のへの

Fertility: pregnancy I

	Pregnancy by Age 18					
	0	LS	2SLS			
Completing Std 12	-0.119***	-0.138***	-0.333	-0.389		
	(0.02)	(0.022)	(0.238)	(0.286)		
KCPE centered at cutoff	0.022	0.006	0.108	0.098		
	(0.054)	(0.058)	(0.116)	(0.128)		
$(KCPE \ge cutoff) \times KCPE$	-0.029	0.005	-0.014	0.033		
	(0.083)	(0.089)	(0.089)	(0.095)		
Constant	0.139***	0.621***	0.214**	0.895**		
	(0.022)	(0.188)	(0.089)	(0.35)		
Controls	No	Yes	No	Yes		
Discontinuity F-stat			6.993	5.589		
Observations	853	853	853	853		
R^2	0.037	0.063				

(Restriction: Female, at least 18 years old)

Note: OLS without KCPE control = -0.117, SD=0.020

Fertility: pregnancy II

Outcome	Estimation							
	(1) OLS	(2) OLS	(3) IVP	(4) IVP	(5) BVP	(6) BVP	(7) 2SLS	(8) 2SLS
P[Pregnant by 18]	-0.119*** (0.020)	-0.138*** (0.022)	-0.454 (0.300)	-0.583*** (0.191)	-0.199** (0.086)	-0.184 (0.123)	-0.333 (0.238)	-0.389 (0.286)
Controls	No	Yes	No	Yes	No	Yes	No	Yes
Discontinuity F-statistic			6.993	5.589	6.993	5.589	6.993	5.589
Observations	853	853	853	853	853	853	853	853

(Restriction: Female, at least 18 years old. Only coefficient on secondary schooling is shown.)

Secondary schooling causes (RD framework):

<四><

Secondary schooling causes (RD framework):

Labor market

Human capital gain, commensurate with OLS

Contrast with Lucas and Mbiti (2010), Filmer and Schady (2014) Drop in self-employment as a young adult Suggestive: Rise in employment **Consistent with a simple model of labor market decisions**

□ > < E > < E > E = の < ○

Secondary schooling causes (RD framework):

Labor market

Human capital gain, commensurate with OLS

Contrast with Lucas and Mbiti (2010), Filmer and Schady (2014) Drop in self-employment as a young adult Suggestive: Rise in employment **Consistent with a simple model of labor market decisions**

Fertility

Teen pregnancy is nearly eliminated

Consistent with Duflo, Dupas, Kremer (2010), Ferré (2009)

Contrast with McCrary and Royer (2011)

Secondary schooling causes (RD framework):

Labor market

Human capital gain, commensurate with OLS

Contrast with Lucas and Mbiti (2010), Filmer and Schady (2014) Drop in self-employment as a young adult Suggestive: Rise in employment **Consistent with a simple model of labor market decisions**

Fertility

Teen pregnancy is nearly eliminated

Consistent with Duflo, Dupas, Kremer (2010), Ferré (2009) Contrast with McCrary and Royer (2011)

Next steps

KLPS3: labor and fertility decisions later in life.

Secondary school administrative data: achievement, structural break. Extensions to labor market decision model.

Secondary schooling causes (RD framework):

Labor market

Human capital gain, commensurate with OLS

Contrast with Lucas and Mbiti (2010), Filmer and Schady (2014) Drop in self-employment as a young adult Suggestive: Rise in employment **Consistent with a simple model of labor market decisions**

Fertility

Teen pregnancy is nearly eliminated Consistent with Duflo, Dupas, Kremer (2010), Ferré (2009) Contrast with McCrary and Royer (2011)

Next steps

KLPS3: labor and fertility decisions later in life.

Secondary school administrative data: achievement, structural break. Extensions to labor market decision model.

For other researchers

Possible design: highlights combination of survey and administrative data.

同 トイヨト イヨト ヨヨ のくや

End