ECON 626: Applied Microeconomics

Lecture 4:

Instrumental Variables

Professors: Pamela Jakiela and Owen Ozier

Compliance with Treatment

How High Is Take-Up?

Even "free" programs are costly for participants, and take-up is often low

Intervention	Take-Up	Source
Job training	$61 \%-64 \%$	Abadie, Angrist, Imbens (2002)
Business training	65%	McKenzie \& Woodruff (2013)
Deworming medication	75%	Kremer \& Miguel (2007)
Microfinance	$13 \%-31 \%$	JPAL \& IPA (2015)

Only people who do a program can be impacted by the program*
\Rightarrow We might like to know how much a program impacted participants (it depends on our notion of treatment)

[^0]
Imperfect Compliance

True model when outcomes are impacted by program participation $\left(P_{i}\right)$:

$$
Y_{i}=\alpha+\beta P_{i}+\varepsilon_{i}
$$

- Program take-up is endogenous conditional on treatment
- Only those randomly assigned to treatment ($T_{i}=1$) are eligible

Imperfect Compliance

True model when outcomes are impacted by program participation $\left(P_{i}\right)$:

$$
Y_{i}=\alpha+\beta P_{i}+\varepsilon_{i}
$$

- Program take-up is endogenous conditional on treatment
- Only those randomly assigned to treatment ($T_{i}=1$) are eligible

We estimate standard regression specification:

$$
Y_{i}=\alpha+\beta T_{i}+\varepsilon_{i}
$$

What do we get?

Imperfect Compliance

Modifying our standard OLS equation, we get:

$$
\begin{aligned}
\hat{\beta} & =E\left[Y_{i} \mid T_{i}=1\right]-E\left[Y_{i} \mid T_{i}=0\right] \\
& =\alpha+\beta E\left[P_{i} \mid T_{i}=1\right]+\varepsilon_{i}-\left(\alpha+\beta E\left[P_{i} \mid T_{i}=0\right]+\varepsilon_{i}\right) \\
& =\beta E\left[P_{i} \mid T_{i}=1\right] \\
& =\beta \lambda
\end{aligned}
$$

where $\lambda<1$ is the take-up rate in the treatment group.
$\beta \lambda$ is called the intention to treat (ITT) estimate.
\Rightarrow Low compliance scales down the estimated treatment effect

Treatment on the Treated

Your colleague suggests comparing the compliers to the control group
\Rightarrow Is this a good idea?

Treatment on the Treated: A Thought Experiment

Questions:

- What was the average outcome among those assigned to the program?
- What does this suggest about the impact of treatment?

Treatment on the Treated: Intuition

The treatment on the treated (TOT) estimator:

$$
\hat{\beta}_{\text {tot }}=\frac{E\left[Y_{i} \mid T_{i}=1\right]-E\left[Y_{i} \mid T_{i}=0\right]}{E\left[P_{i} \mid T_{i}=1\right]-E\left[P_{i} \mid T_{i}=0\right]}
$$

Intuitively, the TOT scales up the ITT effect to reflect imperfect take-up (Called TOT when one-sided noncompliance: compliers and never-takers, but no always-takers or defiers; see MH 4.4.3)

- Assumption: treatment only works through program take-up
- (the "exclusion restriction")
- Not always obvious whether this is true

Treatment on the Treated: Implementation

Estimated via two-stage least squares (2SLS):

$$
\begin{array}{ll}
Y_{i}=\alpha_{1}+\beta_{1} \hat{P}_{i}+\varepsilon_{i} & {[\text { [V regression }]} \\
P_{i}=\alpha_{2}+\beta_{2} T_{i}+\nu_{i} & {[\text { first stage }]}
\end{array}
$$

Easy to implement using Stata's ivregress 2sls command

What Does Treatment on the Treated Measure?

$T=0$
always takers
compliers
never takers

$T=1$
always takers
compliers
never takers

TOT estimates local average treatment effect (LATE) on compliers. Under homogeneous treatment effects (same for everyone), this is also the average treatment effect (ATE) for any population.
But: Under heterogeneous treatment effects (not the same for everyone), the LATE is particular to the compliers. It also requires...

- Monotonicity assumption: there are no defiers
- When violated, TOT tells us about weighted difference between treatment effects on compliers and defiers... but it gets complicated

History and mechanics of instrumental variables

Wald

When two variables are measured with error, how do we estimate their true relationship?

Wald

Underlying relationship

Wald

Wald

Wald

Wald - attenuation bias

Wald - attenuation bias

Noise in X, estimated: attenuation bias

Wald - attenuation bias

Wald - attenuation bias

Noise in X, estimated: attenuation bias

Wald - attenuation bias

Suppose we have one more piece of information: whether, for each observation, the underlying x value (without the measurement error) is above or below 0.5 .

Wald - attenuation bias

Suppose we have one more piece of information: whether, for each observation, the underlying x value (without the measurement error) is above or below 0.5 . This information will prove to be an "instrument."

Wald - overcoming attenuation bias

Noise in X, estimated: attenuation bias

Wald - overcoming attenuation bias

Wald - overcoming attenuation bias

Grouped observations

Wald - overcoming attenuation bias

Grouped observations with group means

Wald - overcoming attenuation bias

Wald - overcoming attenuation bias

Grouped observations with Wald estimator, 50 obs (I)

Wald - overcoming attenuation bias

Grouped observations with Wald estimator, 50 obs (II)

Wald - overcoming attenuation bias

Wald - overcoming attenuation bias

Wald - overcoming attenuation bias

Grouped observations with Wald estimator, 1000 obs

Wald - extending to endogeneity

Cross-sectional relationship

Wald - extending to endogeneity

Cross-sectional relationship, estimated

Wald - extending to endogeneity

Data generating process:

$$
\begin{aligned}
& Z \sim \mathcal{U}(0,2) \\
& \nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1) \text { i.i.d. } \\
& \xi=2 \nu_{3}+0.2 \nu_{1} \\
& \eta=-3 \nu_{3}+0.2 \nu_{2}
\end{aligned}
$$

Wald - extending to endogeneity

Data generating process:
$Z \sim \mathcal{U}(0,2)$
$\nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1)$ i.i.d.
$\xi=2 \nu_{3}+0.2 \nu_{1}$
$\eta=-3 \nu_{3}+0.2 \nu_{2}$
ξ and η not independent; strongly negatively correlated.

Wald - extending to endogeneity

Data generating process:
$Z \sim \mathcal{U}(0,2)$
$\nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1)$ i.i.d.
$\xi=2 \nu_{3}+0.2 \nu_{1}$
$\eta=-3 \nu_{3}+0.2 \nu_{2}$
ξ and η not independent;
strongly negatively correlated.
$X=Z+\xi$
$Y=X+\eta$

Wald - extending to endogeneity

Data generating process:

$$
Z \sim \mathcal{U}(0,2)
$$

$\nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1)$ i.i.d.
$\xi=2 \nu_{3}+0.2 \nu_{1}$
$\eta=-3 \nu_{3}+0.2 \nu_{2}$
ξ and η not independent;

strongly negatively correlated.

$$
\begin{aligned}
& X=Z+\xi \\
& Y=X+\eta
\end{aligned}
$$

Wald - extending to endogeneity

Data generating process:
$Z \sim \mathcal{U}(0,2)$
$\nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1)$ i.i.d.
$\xi=2 \nu_{3}+0.2 \nu_{1}$
$\eta=-3 \nu_{3}+0.2 \nu_{2}$
ξ and η not independent;

strongly negatively correlated.

$$
\begin{aligned}
& X=Z+\xi \\
& Y=X+\eta
\end{aligned}
$$

Wald - extending to endogeneity

Data generating process:

$$
\begin{aligned}
& Z \sim \mathcal{U}(0,2) \\
& \nu_{1}, \nu_{2}, \nu_{3} \sim \mathcal{N}(0,1) \text { i.i.d. } \\
& \xi=2 \nu_{3}+0.2 \nu_{1} \\
& \eta=-3 \nu_{3}+0.2 \nu_{2} \\
& \xi \text { and } \eta \text { not independent; } \\
& \text { strongly negatively correlated. } \\
& X=Z+\xi \\
& Y=X+\eta
\end{aligned}
$$

Begin Wald approach by considering a split based on whether $Z>1$.

Wald - extending to endogeneity

Cross-sectional relationship, estimated

Wald - extending to endogeneity

Cross-sectional relationship

Wald - extending to endogeneity

Data divided into two groups by instrument

Wald - extending to endogeneity

Wald - extending to endogeneity

Data divided into two groups; Wald estimator

Wald - extending to endogeneity

Data divided into ten groups by instrument

Wald - extending to endogeneity

Data divided into ten groups; 2SLS estimator

Wald - extending to endogeneity

Data projected onto instrument; 2SLS estimator

Wald - extending to endogeneity

Data projected onto instrument; 2SLS estimator

Instrumental variables scenarios

Instrumental variables scenarios

Problem: measure the causal casual effect of $X^{\text {end }}$ on Y.

Instrumental variables scenarios

Problem: measure the causal effect of $X^{\text {end }}$ on Y.

Instrumental variables scenarios

Problem: measure the causal effect of $X^{\text {end }}$ on Y.
Inconsistency of least-squares methods when: measurement error in regressors, simultaneity, or when causal equation (Y) error term is correlated with $X^{\text {end }}$ (omitted variables). Discussion in Cameron and Trivedi, section 6.4, and Angrist and Pishke chapter 4.

Instrumental variables scenarios

Problem: measure the causal effect of $X^{\text {end }}$ on Y.
Inconsistency of least-squares methods when: measurement error in regressors, simultaneity, or when causal equation (Y) error term is correlated with $X^{\text {end }}$ (omitted variables). Discussion in Cameron and Trivedi, section 6.4, and Angrist and Pishke chapter 4.

Example: $X^{\text {end }}$ is schooling; Y is wage;
"ability" drives both Y and $X^{\text {end }}$, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Instrumental variables scenarios

Problem: measure the causal effect of $X^{\text {end }}$ on Y.
Inconsistency of least-squares methods when: measurement error in regressors, simultaneity, or when causal equation (Y) error term is correlated with $X^{\text {end }}$ (omitted variables). Discussion in Cameron and Trivedi, section 6.4, and Angrist and Pishke chapter 4.

Example: $X^{\text {end }}$ is schooling; Y is wage;
"ability" drives both Y and $X^{\text {end }}$, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Example: $X^{\text {end }}$ is number of children; Y is labor force participation; "inclination to remain outside the formal labor force" drives Y down and $X^{\text {end }}$ up, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Instrumental variables scenarios

Problem: measure the causal effect of $X^{\text {end }}$ on Y.
Inconsistency of least-squares methods when: measurement error in regressors, simultaneity, or when causal equation (Y) error term is correlated with $X^{\text {end }}$ (omitted variables). Discussion in Cameron and Trivedi, section 6.4, and Angrist and Pishke chapter 4.

Example: $X^{\text {end }}$ is schooling; Y is wage; "ability" drives both Y and $X^{\text {end }}$, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Example: $X^{\text {end }}$ is number of children; Y is labor force participation; "inclination to remain outside the formal labor force" drives Y down and $X^{\text {end }}$ up, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Example: $X^{\text {end }}$ is medical treatment; Y is health; prior illness drives Y down and $X^{\text {end }}$ up, so may bias cross-sectional regression of Y on $X^{\text {end }}$.

Instrumental variables basics

Instrumental variables basics

Terminology of Instrumental Variables ("IV") approach:

Instrumental variables basics

Terminology of Instrumental Variables ("IV") approach:

First stage: Z affects $X^{\text {end }}$

Instrumental variables basics

Terminology of Instrumental Variables ("IV") approach:

First stage: Z affects $X^{\text {end }}$
Exclusion restriction: Z ONLY affects Y via its effect on $X^{\text {end }}$

Instrumental variables basics

Terminology of Instrumental Variables ("IV") approach:

First stage: Z affects X end
Exclusion restriction: Z ONLY affects Y via its effect on $X^{\text {end }}$
Z : "instrument(s)" or "excluded instrument(s)"
Y : "dependent variable" or "endogenous dependent variable" $X^{\text {end }}$: "endogenous variable" or "endogenous regressor"

Instrumental variables basics

Terminology of Instrumental Variables ("IV") approach:

First stage: Z affects X end
Exclusion restriction: Z ONLY affects Y via its effect on $X^{\text {end }}$
Z : "instrument(s)" or "excluded instrument(s)"
Y : "dependent variable" or "endogenous dependent variable"
$X^{\text {end }}$: "endogenous variable" or "endogenous regressor"
What about other covariates?
$X^{\text {ex }: ~ " c o v a r i a t e s " ~ o r ~ " e x o g e n o u s ~ r e g r e s s o r s " ~}$
(First stage and exclusion restriction now conditional on $X^{e x}$.)

Instrumental variables basics

$$
X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}(\text { "First stage" })
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model })
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e{ }^{\prime \prime}} \pi_{10}+\xi_{1 i} \text { ("First stage") } \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \text { (causal model) } \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{\text {ex }}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{\text {ex }}\right]=0 ;
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \text { (causal model) } \\
& E\left[\eta_{i} \mid X_{i}^{e x}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{e x}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{e x}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{e x^{\prime}} \alpha+\eta_{i}
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x^{\prime}} \pi_{10}+\xi_{1 i} \text { ("First stage") } \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \text { (causal model) } \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{e x}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{\text {ex }}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{e x^{\prime}} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e x^{\prime}}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right)
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime} \pi_{10}+\xi_{1 i} \text { ("First stage") } \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{e x \prime} \alpha+\eta_{i} \text { (causal model) } \\
& E\left[\eta_{i} \mid X_{i}^{e x}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{e x}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{e x}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{\text {ex }}\right]=0 ; \\
& Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{e x \prime} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e \prime \prime}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\underbrace{\pi_{21}}_{\rho \pi_{11}} Z_{i}+\mathbf{X}_{i}^{e \prime \prime} \underbrace{\pi_{20}}_{\left(\rho \pi_{10}+\alpha\right)}+\underbrace{\xi_{2 i}}_{\left(\rho \xi_{1 i}+\eta_{i}\right)}
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{e x}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{\text {ex }}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i}(\text { ("Reduced form" })
\end{aligned}
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e \prime \prime} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{e x}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{\text {ex }}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{e x \prime} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i}(\text { ("Reduced form" })
\end{aligned}
$$

$\hat{X}_{i}^{\text {end }}=\hat{\pi}_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \hat{\pi}_{10}$ (Estimated first stage)

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e \prime \prime} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{e x}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{e x \prime} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i}(\text { ("Reduced form" })
\end{aligned}
$$

$\hat{X}_{i}^{\text {end }}=\mathbf{Z}_{i}^{\prime} \hat{\pi}_{11}+\mathbf{X}_{i}^{\text {ex' }} \hat{\pi}_{10}$ (Estimated first stage)

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{e x}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{\text {ex }}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{e x \prime}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i}(\text { ("Reduced form" })
\end{aligned}
$$

$\hat{X}_{i}^{\text {end }}=\mathbf{Z}_{i}^{\prime} \hat{\pi}_{11}+\mathbf{X}_{i}^{\text {ex' }} \hat{\pi}_{10}$ (Estimated first stage)
$Y_{i}=\rho \underbrace{\left(\hat{X}_{i}^{\text {end }}+\left(X_{i}^{\text {end }}-\hat{X}_{i}^{\text {end }}\right)\right.}_{X_{i}^{\text {end }}})+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}$ (plug into causal model)

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{e x^{\prime}} \pi_{10}+\xi_{1 i}(\text { ("First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{e x}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{e x}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{e x}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{e x}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i}(\text { ("Reduced form" })
\end{aligned}
$$

$\hat{X}_{i}^{\text {end }}=\mathbf{Z}_{i}^{\prime} \hat{\pi}_{11}+\mathbf{X}_{i}^{\text {ex' }} \hat{\pi}_{10}$ (Estimated first stage)

$$
Y_{i}=\rho\left(\hat{X}_{i}^{\text {end }}+\left(X_{i}^{\text {end }}-\hat{X}_{i}^{\text {end }}\right)\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}
$$

$$
Y_{i}=\rho \hat{X}_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\left(\eta_{i}+\rho\left(X_{i}^{\text {end }}-\hat{X}_{i}^{\text {end }}\right)\right)(\text { "Second stage" })
$$

Instrumental variables basics

$$
\begin{aligned}
& X_{i}^{\text {end }}=\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}(\text { "First stage" }) \\
& Y_{i}=\rho X_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i}(\text { causal model }) \\
& E\left[\eta_{i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\xi_{1 i} \mid X_{i}^{\text {ex }}\right]=0 ; E\left[\eta_{i} \xi_{1 i} \mid X_{i}^{\text {ex }}\right] \neq 0 ; E\left[\eta_{i} \mid Z_{i}, X_{i}^{\text {ex }}\right]=0 ; \\
& \hline Y_{i}=\rho\left(\pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{10}+\xi_{1 i}\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \\
& Y_{i}=\rho \pi_{11} Z_{i}+\mathbf{X}_{i}^{\text {ex' }}\left(\rho \pi_{10}+\alpha\right)+\left(\rho \xi_{1 i}+\eta_{i}\right) \\
& Y_{i}=\pi_{21} Z_{i}+\mathbf{X}_{i}^{\text {ex' }} \pi_{20}+\xi_{2 i} \text { ("Reduced form") } \\
& \hline \hat{X}_{i}^{\text {end }}=\mathbf{Z}_{i}^{\prime} \hat{\pi}_{11}+\mathbf{X}_{i}^{\text {ex' }} \hat{\pi}_{10}(\text { Estimated first stage }) \\
& Y_{i}=\rho\left(\hat{X}_{i}^{\text {end }}+\left(X_{i}^{\text {end }}-\hat{X}_{i}^{\text {end }}\right)\right)+\mathbf{X}_{i}^{\text {ex' }} \alpha+\eta_{i} \\
& Y_{i}=\rho \hat{X}_{i}^{\text {end }}+\mathbf{X}_{i}^{\text {ex' }} \alpha+\left(\eta_{i}+\rho\left(X_{i}^{\text {end }}-\hat{X}_{i}^{\text {end }}\right)\right)(\text { "Second stage" }) \\
& \text { Hence: "Two-stage least squares," " } 2 S L S^{\prime \prime} \text { or "TSLS" }
\end{aligned}
$$

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument $X^{\text {end }}$ is schooling (endogenous regressor); Y is wage (dependent var.); how do we find variation in education that is not driven by the common (unobserved) causes of education and wage ("ability")?

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument $X^{\text {end }}$ is schooling (endogenous regressor); Y is wage (dependent var.); how do we find variation in education that is not driven by the common (unobserved) causes of education and wage ("ability")? Z is quarter of birth (instrument). Exclusion restriction? First stage?

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument $X^{\text {end }}$ is schooling (endogenous regressor); Y is wage (dependent var.); how do we find variation in education that is not driven by the common (unobserved) causes of education and wage ("ability")?
Z is quarter of birth (instrument). Exclusion restriction? First stage?
Born in Q4: start school just before you turn 6. At age 16, you have completed 10+ years of school.
Born in Q1: start school September after you turn 6. At age 16, you have completed 9 years and a few months of school.

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument $X^{\text {end }}$ is schooling (endogenous regressor); Y is wage (dependent var.); how do we find variation in education that is not driven by the common (unobserved) causes of education and wage ("ability")?
Z is quarter of birth (instrument). Exclusion restriction? First stage?
Born in Q4: start school just before you turn 6. At age 16, you have completed 10+ years of school.
Born in Q1: start school September after you turn 6. At age 16, you have completed 9 years and a few months of school.

Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument $X^{\text {end }}$ is schooling (endogenous regressor); Y is wage (dependent var.); how do we find variation in education that is not driven by the common (unobserved) causes of education and wage ("ability")? Z is quarter of birth (instrument). Exclusion restriction? First stage?

Born in Q4: start school just before you turn 6. At age 16, you have completed 10+ years of school.
Born in Q1: start school September after you turn 6. At age 16, you have completed 9 years and a few months of school.

Finding: wage returns to education via 2SLS slightly larger than OLS.
(Angrist and Krueger 1991)

Instrumental variables scenarios

Example: same-sex and twins instruments ("human cloning")

Instrumental variables scenarios

> Example: same-sex and twins instruments $X^{\text {end }}$ is number of children (endogenous regressor); Y is labor force participation (dependent variable);
> how do we find variation in family size that is not driven by the common (unobserved) causes of family size and labor force participation ("inclination to remain outside the formal labor force")?

Instrumental variables scenarios

Example: same-sex and twins instruments $X^{\text {end }}$ is number of children (endogenous regressor); Y is labor force participation (dependent variable);
how do we find variation in family size that is not driven by the common (unobserved) causes of family size and labor force participation
("inclination to remain outside the formal labor force")?
$\mathbf{Z}=$ two indicators: twins at second birth; first two children same sex (instruments). Exclusion restriction? First stage?

Instrumental variables scenarios

Example: same-sex and twins instruments

 $X^{\text {end }}$ is number of children (endogenous regressor);Y is labor force participation (dependent variable);
how do we find variation in family size that is not driven by the common (unobserved) causes of family size and labor force participation
("inclination to remain outside the formal labor force")?
$\mathbf{Z}=$ two indicators: twins at second birth; first two children same sex (instruments). Exclusion restriction? First stage?

Finding: family size decreases women's labor force participation, but not by as much as OLS would suggest. (Angrist and Evans 1998, Mostly Harmless Table 4.1.4)

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery
- Job Training Partnership Act (JTPA) randomized trial

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery
- Job Training Partnership Act (JTPA) randomized trial
- Ocean weather

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery
- Job Training Partnership Act (JTPA) randomized trial
- Ocean weather
- Rainfall! (Paxson 1992; Miguel et al 2004: Maccini and Yang 2009; Madestam et al 2013; etc.)

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery
- Job Training Partnership Act (JTPA) randomized trial
- Ocean weather
- Rainfall! (Paxson 1992; Miguel et al 2004: Maccini and Yang 2009; Madestam et al 2013; etc.)
- Electrification...

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

- Vietnam draft lottery
- Job Training Partnership Act (JTPA) randomized trial
- Ocean weather
- Rainfall! (Paxson 1992; Miguel et al 2004: Maccini and Yang 2009; Madestam et al 2013; etc.)
- Electrification... slope of land (Dinkelman 2011)

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage? Other kinds of scenarios

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage? Other kinds of scenarios

- $Y=$ Child IQ; $X^{\text {end }}=$ growing cotton; $Z=$ born in US south

Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage? Other kinds of scenarios

- $Y=$ Child IQ; $X^{\text {end }}=$ growing cotton; $Z=$ born in US south
- $Y=$ "Happiness, 1-5;" $X^{\text {end }}=$ "Fair workplace, $1-5 ; " Z=$ variation in when a pay raise is announced to individuals

Instrumental variables scenarios

> Likely source of OLS bias? Exclusion restriction? First stage? Other kinds of scenarios

- $Y=$ Child IQ; $X^{\text {end }}=$ growing cotton; $Z=$ born in US south
- $Y=$ "Happiness, 1-5;" $X^{\text {end }}=$ "Fair workplace, 1-5;" $Z=$ variation in when a pay raise is announced to individuals
- $Y=$ "Satisfied $w /$ govt services;" $X^{\text {end }}=$ city pruned tree branches over sidewalk recently; $Z=$ city repaved street recently

Instrumental variables: LATE (MHE Chapter 4.4)

Consider a randomized trial with imperfect compliance (as in JTPA).

Terminology:

- Always-takers $D_{0 i}=D_{1 i}=1$, so $D_{i}=1$ regardless of Z_{i}
- Never-takers $D_{0 i}=D_{1 i}=0$, so $D_{i}=0$ regardless of Z_{i}
- Compliers $D_{0 i}=0 ; D_{1 i}=1$, so $D_{i}=Z_{i}$

Under heterogeneous treatment effects, having not only compliers but also defiers would cause a problem.

- Defiers: $D_{0 i}=1 ; D_{1 i}=0$, so $D_{i}=\left(1-Z_{i}\right)$.

We need monotonicity for an interpretable Local Average Treatment Effect when there are heterogeneous treatment effects: either $D_{1 i} \geq D_{0 ;} \forall i$, or $D_{1 i} \leq D_{0 i} \forall i$.

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors?

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors? Overidentified.

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors? Overidentified.

Overidentification, exogeneity, and heterogeneous effects:

- Suppose we have two instruments, one endogenous regressor, and there are statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean?

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors? Overidentified.

Overidentification, exogeneity, and heterogeneous effects:

- Suppose we have two instruments, one endogenous regressor, and there are statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean? (at least two possibilities)

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors? Overidentified.

Overidentification, exogeneity, and heterogeneous effects:

- Suppose we have two instruments, one endogenous regressor, and there are statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean? (at least two possibilities)
- Suppose we have two instruments, one endogenous regressor, and there are not statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean?

Instrumental variables: Overidentification

Terminology:

- Exactly as many linearly independent instruments as endogenous regressors?
Just identified.
- More linearly independent instruments than endogenous regressors? Overidentified.

Overidentification, exogeneity, and heterogeneous effects:

- Suppose we have two instruments, one endogenous regressor, and there are statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean? (at least two possibilities)
- Suppose we have two instruments, one endogenous regressor, and there are not statistically significant differences between the 2SLS estimates given by one instrument as compared to the other. What does it mean?(at least two possibilities)

Weak Instruments

Instrumental variables: Weak instruments

Cross-sectional relationship

Instrumental variables: Weak instruments

Data projected onto instrument; 2SLS estimator

Instrumental variables: Weak instruments

Instrumental variables: Weak instruments

Data divided into two groups; Wald estimator

Instrumental variables: Weak instruments

Data divided into ten groups by instrument

Instrumental variables: Weak instruments

Data divided into ten groups; 2SLS estimator

Instrumental variables: Weak instruments

Data divided into 50 groups

Instrumental variables: Weak instruments

Data divided into 50 groups with estimation

Instrumental variables: Weak instruments

Data divided into 500 groups

Instrumental variables: Weak instruments

Data divided into 500 groups with estimation

Instrumental variables: Weak instruments

Cross-sectional relationship, estimated

Instrumental variables: Weak instruments

2SLS bias towards OLS (MHE 4.6.21):

$$
E\left[\hat{\beta}_{2 S L S}-\beta\right] \approx \frac{\sigma_{\eta \xi}}{\sigma_{\xi}^{2}} \frac{1}{F+1}
$$

$F=F$ statistic for the joint significance of the excluded instruments.
Just-identified 2SLS median-unbiased even with weak first stage, but many weak instruments can lead to bias.

Note: other IV estimators exist (and are implemented in Stata), including LIML. LIML may be less biased than 2SLS w/ weak instruments, but imposes distributional assumptions; less to gain under heteroskedasticity. See discussion: end of Chapter 4 of MHE; Cameron and Trivedi section 6.4. Also note: 2SLS confidence intervals may be incorrect for weak instruments, but heteroskedasticity-robust Anderson-Rubin confidence intervals can be constructed via user-written Stata routines.

Instrumental variables: Weak instruments

2SLS bias towards OLS (MHE 4.6.21):

$$
E\left[\hat{\beta}_{2 S L S}-\beta\right] \approx \frac{\sigma_{\eta \xi}}{\sigma_{\xi}^{2}} \frac{1}{F+1}
$$

$F=F$ statistic for the joint significance of the excluded instruments in the first stage.

Note that this is the "population" F statistic. We will return to this point in the context of Alwyn Young's paper. What is an F statistic?

Instrumental variables: Weak instruments

2SLS bias towards OLS (MHE 4.6.21):

$$
E\left[\hat{\beta}_{2 S L S}-\beta\right] \approx \frac{\sigma_{\eta \xi}}{\sigma_{\xi}^{2}} \frac{1}{F+1}
$$

$F=F$ statistic for the joint significance of the excluded instruments in the first stage.

Note that this is the "population" F statistic. We will return to this point in the context of Alwyn Young's paper. What is an F statistic?

$$
\frac{\text { Explained variation/regressors }}{\text { Residual variation/residual d.o.f. }}
$$

Young: Consistency without Inference

Young, Consistency without Inference: misleading F

Experiment 1:

$x_{1}, x_{2} \sim \operatorname{iid} \mathcal{U}(0,1)$
$\varepsilon_{1}, \varepsilon_{2} \sim \operatorname{iid} \mathcal{N}(0,1)$
$y=\varepsilon_{1}+\varepsilon_{2}$
$N=100$ observations
regress y x1 x2
(1,000 times)

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

Experiment 2:
$x_{1}, x_{2} \sim \operatorname{iid} \mathcal{U}(0,1)$
$\varepsilon_{1}, \varepsilon_{2} \sim \operatorname{iid} \mathcal{N}(0,1)$
$y=\varepsilon_{1}+\varepsilon_{2}$
$N=10$ observations
regress y x1 x2
(1,000 times)

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

F statistic p-values, another (uniform) regressor, 10 observations

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

Experiment 3:
$x_{1}, x_{2} \sim$ iid triangular $f_{x}(x)=2-x$ if $0 \leq x \leq 1 ; 0$ o.w.
$\varepsilon_{1}, \varepsilon_{2} \sim$ iid $\mathcal{N}(0,1)$
$\tilde{\varepsilon}_{1}=\varepsilon_{1} \cdot x_{1}$
$\tilde{\varepsilon}_{2}=\varepsilon_{2} \cdot x_{2}$
$y=\tilde{\varepsilon}_{1}+\tilde{\varepsilon}_{2}$
$N=10$ observations
regress y x1 x2
(1,000 times)

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

Experiment 4:
$x_{1}, x_{2} \sim$ iid exponential $f_{x}(x)=e^{-x}$ if $x>0 ; 0$ o.w.
$\varepsilon_{1}, \varepsilon_{2} \sim$ iid $\mathcal{N}(0,1)$
$\tilde{\varepsilon}_{1}=\varepsilon_{1} \cdot x_{1}$
$\tilde{\varepsilon}_{2}=\varepsilon_{2} \cdot x_{2}$
$y=\tilde{\varepsilon}_{1}+\tilde{\varepsilon}_{2}$
$N=10$ observations
regress y x1 x2
(1,000 times)

Young, Consistency without Inference: misleading F

Young, Consistency without Inference: misleading F

Some conclusions:

- Small number of observations? Not in asymptopia.
- Small number of clusters? Not in asymptopia.
- Small number of disproportionately large clusters (even if also a large number of small clusters)? Not in asymptopia.
- Important outliers? Not in asymptopia.
- Robustness: dropping any one observation/cluster should not change things much.
- (much more in the paper)

Try IV out for yourself.

[^0]: *Some restrictions apply

