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Compliance with Treatment



How High Is Take-Up?

Even “free” programs are costly for participants, and take-up is often low

Intervention Take-Up Source

Job training 61% – 64% Abadie, Angrist, Imbens (2002)

Business training 65% McKenzie & Woodruff (2013)

Deworming medication 75% Kremer & Miguel (2007)

Microfinance 13% – 31% JPAL & IPA (2015)

Only people who do a program can be impacted by the program∗

⇒ We might like to know how much a program impacted participants
(it depends on our notion of treatment)

∗Some restrictions apply



Imperfect Compliance

True model when outcomes are impacted by program participation (Pi ):

Yi = α + βPi + εi

• Program take-up is endogenous conditional on treatment

• Only those randomly assigned to treatment (Ti = 1) are eligible

We estimate standard regression specification:

Yi = α + βTi + εi

What do we get?



Imperfect Compliance

Modifying our standard OLS equation, we get:

β̂ = E [Yi |Ti = 1]− E [Yi |Ti = 0]

= α + βE [Pi |Ti = 1] + εi − (α + βE [Pi |Ti = 0] + εi )

= βE [Pi |Ti = 1]

= βλ

where λ < 1 is the take-up rate in the treatment group.

βλ is called the intention to treat (ITT) estimate.

⇒ Low compliance scales down the estimated treatment effect



Treatment on the Treated
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Treatment Status

Control group
Treatment group: take-up = 0
Treatment group: take-up = 1

Your colleague suggests comparing the compliers to the control group

⇒ Is this a good idea?



Treatment on the Treated: A Thought Experiment

evaluation
sample

N = 200

assigned
treatments

NT = 100

program
take-up

25 percent

outcomes

ȲT = 2
ȲC = 0

Questions:

• What was the average outcome among those assigned to the
program?

• What does this suggest about the impact of treatment?



Treatment on the Treated: Intuition

The treatment on the treated (TOT) estimator:

β̂tot =
E [Yi |Ti = 1]− E [Yi |Ti = 0]

E [Pi |Ti = 1]− E [Pi |Ti = 0]

Intuitively, the TOT scales up the ITT effect to reflect imperfect take-up

(Called TOT when one-sided noncompliance: compliers and never-takers,
but no always-takers or defiers; see MH 4.4.3)

• Assumption: treatment only works through program take-up

I (the “exclusion restriction”)

I Not always obvious whether this is true



Treatment on the Treated: Implementation

Estimated via two-stage least squares (2SLS):

Yi = α1 + β1P̂i + εi [IV regression]

Pi = α2 + β2Ti + νi [first stage]

Easy to implement using Stata’s ivregress 2sls command



What Does Treatment on the Treated Measure?

T = 0 T = 1

always takers always takers

compliers compliers

never takers never takers

TOT estimates local average treatment effect (LATE) on compliers.
Under homogeneous treatment effects (same for everyone), this is also
the average treatment effect (ATE) for any population.
But: Under heterogeneous treatment effects (not the same for everyone),
the LATE is particular to the compliers. It also requires...

• Monotonicity assumption: there are no defiers

• When violated, TOT tells us about weighted difference between
treatment effects on compliers and defiers... but it gets complicated



History and mechanics of instrumental variables



Wald

When two variables are measured with error,
how do we estimate their true relationship?



Wald

estimated β: 1.000
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Wald

estimated β: 1.103
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Noise in Y, estimated



Wald - attenuation bias

estimated β: 0.352
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Noise in X, estimated: attenuation bias



Wald - attenuation bias

estimated β: 0.356
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Noise in X, estimated: attenuation bias



Wald - attenuation bias

Suppose we have one more piece of information: whether, for each
observation, the underlying x value (without the measurement error) is
above or below 0.5. This information will prove to be an “instrument.”



Wald - overcoming attenuation bias

estimated β: 0.897
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Wald - overcoming attenuation bias

estimated β: 0.861
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Grouped observations with Wald estimator, 50 obs (I)



Wald - overcoming attenuation bias

estimated β: 1.316
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Grouped observations with Wald estimator, 50 obs (IV)



Wald - overcoming attenuation bias

estimated β: 1.005
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Wald - extending to endogeneity



Wald - extending to endogeneity

Data generating process:

Z ∼ U(0, 2)
ν1, ν2, ν3 ∼ N (0, 1) i .i .d .

ξ = 2ν3 + 0.2ν1
η = −3ν3 + 0.2ν2

ξ and η not independent;
strongly negatively correlated.

X = Z + ξ
Y = X + η

Z X Y

ν3

Begin Wald approach by considering a split based on whether Z > 1.



Wald - extending to endogeneity



Wald - extending to endogeneity



Wald - extending to endogeneity



Instrumental variables scenarios

Problem: measure the causal casual effect of X end on Y .
Inconsistency of least-squares methods when: measurement error in
regressors, simultaneity, or when causal equation (Y ) error term is
correlated with X end (omitted variables). Discussion in Cameron and
Trivedi, section 6.4, and Angrist and Pishke chapter 4.

Example: X end is schooling; Y is wage;
“ability” drives both Y and X end , so may bias cross-sectional regression
of Y on X end .

Example: X end is number of children; Y is labor force participation;
“inclination to remain outside the formal labor force” drives Y down and
X end up, so may bias cross-sectional regression of Y on X end .

Example: X end is medical treatment; Y is health;
prior illness drives Y down and X end up, so may bias cross-sectional
regression of Y on X end .



Instrumental variables basics

Terminology of Instrumental Variables (“IV”) approach:

First stage: Z affects X end

Exclusion restriction: Z ONLY affects Y via its effect on X end

Z : “instrument(s)” or “excluded instrument(s)”
Y : “dependent variable” or “endogenous dependent variable”
X end : “endogenous variable” or “endogenous regressor”

What about other covariates?
X ex : “covariates” or “exogenous regressors”

(First stage and exclusion restriction now conditional on X ex .)



Instrumental variables basics

X end
i = π11Zi + Xex

i
′
π10 + ξ1i (“First stage”)

Yi = ρX end
i + Xex

i
′
α + ηi (causal model)

E [ηi |X ex
i ] = 0; E [ξ1i |X ex

i ] = 0; E [ηiξ1i |X ex
i ] 6= 0; E [ηi |Zi ,X

ex
i ] = 0;

Yi = ρ(π11Zi + Xex
i
′
π10 + ξ1i ) + Xex

i
′
α + ηi

Yi = ρπ11Zi + Xex
i
′
(ρπ10 + α) + (ρξ1i + ηi )

Yi = π21︸︷︷︸
ρπ11

Zi + Xex
i
′

π20︸︷︷︸
(ρπ10+α)

+ ξ2i︸︷︷︸
(ρξ1i+ηi )

Yi = π21Zi + Xex
i
′
π20 + ξ2i (“Reduced form”)

X̂ end
i = π̂11Zi + Xex

i
′
π̂10 (Estimated first stage)

X̂ end
i = Z′i π̂11 + Xex

i
′
π̂10 (Estimated first stage)

Yi = ρ (X̂ end
i + (X end

i − X̂ end
i ))︸ ︷︷ ︸

X end
i

+Xex
i
′
α + ηi (plug into causal model)

Yi = ρ(X̂ end
i + (X end

i − X̂ end
i )) + Xex

i
′
α + ηi

Yi = ρX̂ end
i + Xex

i
′
α + (ηi + ρ(X end

i − X̂ end
i )) (“Second stage”)

Hence: “Two-stage least squares,” “2SLS” or “TSLS”



Instrumental variables scenarios

Example: quarter of birth / compulsory schooling instrument
X end is schooling (endogenous regressor); Y is wage (dependent var.);
how do we find variation in education that is not driven by the common
(unobserved) causes of education and wage (“ability”)?
Z is quarter of birth (instrument). Exclusion restriction? First stage?

Born in Q4: start school just before you turn 6. At age 16, you have
completed 10+ years of school.
Born in Q1: start school September after you turn 6. At age 16, you
have completed 9 years and a few months of school.

Finding: wage returns to education via 2SLS slightly larger than OLS.
(Angrist and Krueger 1991)



Instrumental variables scenarios

Example: same-sex and twins instruments

(“human cloning”)

X end is number of children (endogenous regressor);
Y is labor force participation (dependent variable);
how do we find variation in family size that is not driven by the common
(unobserved) causes of family size and labor force participation
(“inclination to remain outside the formal labor force”)?
Z = two indicators: twins at second birth; first two children same sex
(instruments). Exclusion restriction? First stage?

Finding: family size decreases women’s labor force participation, but not
by as much as OLS would suggest. (Angrist and Evans 1998, Mostly
Harmless Table 4.1.4)



Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?

• Vietnam draft lottery

• Job Training Partnership Act (JTPA) randomized trial

• Ocean weather

• Rainfall! (Paxson 1992; Miguel et al 2004: Maccini and Yang 2009;
Madestam et al 2013; etc.)

• Electrification... slope of land (Dinkelman 2011)



Instrumental variables scenarios

Likely source of OLS bias? Exclusion restriction? First stage?
Other kinds of scenarios

• Y = Child IQ; X end = growing cotton; Z = born in US south

• Y = “Happiness, 1-5;” X end = “Fair workplace, 1-5;” Z = variation
in when a pay raise is announced to individuals

• Y = “Satisfied w/ govt services;” X end = city pruned tree branches
over sidewalk recently; Z = city repaved street recently



Instrumental variables: LATE (MHE Chapter 4.4)

Consider a randomized trial with imperfect compliance (as in JTPA).

Terminology:

• Always-takers D0i = D1i = 1, so Di = 1 regardless of Zi

• Never-takers D0i = D1i = 0, so Di = 0 regardless of Zi

• Compliers D0i = 0; D1i = 1, so Di = Zi

Under heterogeneous treatment effects, having not only compliers but
also defiers would cause a problem.

• Defiers: D0i = 1; D1i = 0, so Di = (1− Zi ).

We need monotonicity for an interpretable Local Average Treatment
Effect when there are heterogeneous treatment effects: either
D1i ≥ D0i∀i , or D1i ≤ D0i∀i .



Instrumental variables: Overidentification

Terminology:

• Exactly as many linearly independent instruments as endogenous
regressors?
Just identified.

• More linearly independent instruments than endogenous regressors?
Overidentified.

Overidentification, exogeneity, and heterogeneous effects:

• Suppose we have two instruments, one endogenous regressor, and
there are statistically significant differences between the 2SLS
estimates given by one instrument as compared to the other. What
does it mean? (at least two possibilities)

• Suppose we have two instruments, one endogenous regressor, and
there are not statistically significant differences between the 2SLS
estimates given by one instrument as compared to the other. What
does it mean?(at least two possibilities)



Weak Instruments



Instrumental variables: Weak instruments



Instrumental variables: Weak instruments

2SLS bias towards OLS (MHE 4.6.21):

E [β̂2SLS − β] ≈ σηξ
σ2
ξ

1

F + 1

F =F statistic for the joint significance of the excluded instruments.

Just-identified 2SLS median-unbiased even with weak first stage, but
many weak instruments can lead to bias.

Note: other IV estimators exist (and are implemented in Stata), including
LIML. LIML may be less biased than 2SLS w/ weak instruments, but
imposes distributional assumptions; less to gain under heteroskedasticity.
See discussion: end of Chapter 4 of MHE; Cameron and Trivedi section
6.4. Also note: 2SLS confidence intervals may be incorrect for weak
instruments, but heteroskedasticity-robust Anderson-Rubin confidence
intervals can be constructed via user-written Stata routines.



Instrumental variables: Weak instruments

2SLS bias towards OLS (MHE 4.6.21):

E [β̂2SLS − β] ≈ σηξ
σ2
ξ

1

F + 1

F =F statistic for the joint significance of the excluded instruments in
the first stage.

Note that this is the “population” F statistic. We will return to this point
in the context of Alwyn Young’s paper. What is an F statistic?

Explained variation/regressors

Residual variation/residual d .o.f .



Young: Consistency without Inference



Young, Consistency without Inference: misleading F

Experiment 1:

x1, x2 ∼ iid U(0, 1)
ε1, ε2 ∼ iid N (0, 1)
y = ε1 + ε2
N = 100 observations
regress y x1 x2

(1,000 times)



Young, Consistency without Inference: misleading F
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Young, Consistency without Inference: misleading F

Experiment 2:

x1, x2 ∼ iid U(0, 1)
ε1, ε2 ∼ iid N (0, 1)
y = ε1 + ε2
N = 10 observations
regress y x1 x2

(1,000 times)



Young, Consistency without Inference: misleading F
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Young, Consistency without Inference: misleading F

Experiment 3:

x1, x2 ∼ iid triangular fx(x) = 2− x if 0 ≤ x ≤ 1; 0 o.w .
ε1, ε2 ∼ iid N (0, 1)
ε̃1 = ε1 · x1
ε̃2 = ε2 · x2
y = ε̃1 + ε̃2
N = 10 observations
regress y x1 x2

(1,000 times)



Young, Consistency without Inference: misleading F
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Young, Consistency without Inference: misleading F

Experiment 4:

x1, x2 ∼ iid exponential fx(x) = e−x if x > 0; 0 o.w .
ε1, ε2 ∼ iid N (0, 1)
ε̃1 = ε1 · x1
ε̃2 = ε2 · x2
y = ε̃1 + ε̃2
N = 10 observations
regress y x1 x2

(1,000 times)



Young, Consistency without Inference: misleading F
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Young, Consistency without Inference: misleading F

Some conclusions:

• Small number of observations? Not in asymptopia.

• Small number of clusters? Not in asymptopia.

• Small number of disproportionately large clusters
(even if also a large number of small clusters)?
Not in asymptopia.

• Important outliers? Not in asymptopia.

• Robustness: dropping any one observation/cluster should not
change things much.

• (much more in the paper)


