ECON 626: Applied Microeconomics

Lecture 3:

Difference-in-Differences

Professors: Pamela Jakiela and Owen Ozier



Intuition and Assumptions



False Counterfactuals

Before vs. After Comparisons:

e Compares: same individuals/communities before and after program

® Drawback: does not control for time trends
Participant vs. Non-Participant Comparisons:

e Compares: participants to those not in the program

® Drawback: selection — why didn’t non-participants participate?
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Two Wrongs Sometimes Make a Right

Difference-in-differences (or “diff-in-diff” or “DD") estimation combines
the (flawed) pre vs. post and participant vs. non-participant approaches

® This can sometimes overcome the twin problems of [1] selection bias
(on fixed traits) and [2] time trends in the outcome of interest

® The basic idea is to observe the (self-selected) treatment group and
a (self-selected) comparison group before and after the program
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Two Wrongs Sometimes Make a Right

Difference-in-differences (or “diff-in-diff” or “DD") estimation combines
the (flawed) pre vs. post and participant vs. non-participant approaches

® This can sometimes overcome the twin problems of [1] selection bias
(on fixed traits) and [2] time trends in the outcome of interest

® The basic idea is to observe the (self-selected) treatment group and
a (self-selected) comparison group before and after the program

The diff-in-diff estimator is:

__ \streatment __ vystreatment _ [ \ycomparison _ \ycomparison
DD = Ypost Ypre (Ypost Ypre >
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DD Estimation: Early Examples

1849: London's worst cholera epidemic claims 14,137 lives

® Two companies supplied water to much of London: the Lambeth
Waterworks Co. and the Southwark and Vauxhall Water Co.

> Both got their water from the Thames
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DD Estimation: Early Examples

1849: London's worst cholera epidemic claims 14,137 lives

® Two companies supplied water to much of London: the Lambeth
Waterworks Co. and the Southwark and Vauxhall Water Co.

> Both got their water from the Thames

® John Snow believed cholera was spread by contaminated water
1852: Lambeth Waterworks moved their intake upriver

® Everyone knew that the Thames was dirty below central London
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DD Estimation: Early Examples

1849: London's worst cholera epidemic claims 14,137 lives

® Two companies supplied water to much of London: the Lambeth
Waterworks Co. and the Southwark and Vauxhall Water Co.

> Both got their water from the Thames

® John Snow believed cholera was spread by contaminated water
1852: Lambeth Waterworks moved their intake upriver

® Everyone knew that the Thames was dirty below central London
1853: London has another cholera outbreak

® Are Lambeth Waterworks customers less likely to get sick?
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DD Estimation: Early Examples

Source: John S"O‘fﬂﬁﬁ%ﬁmi&%;mﬁﬁﬁwm?&oeconomics Lecture 3: Difference-in-Differences, Slide 6



DD Estimation: Early Examples

John Snow’s Grand Experiment:

® Mortality data showed that very few cholera deaths were reported in
areas of London that were only supplied by the Lambeth Waterworks

® Snow hired John Whiting to visit the homes of the deceased to
determine which company (if any) supplied their drinking water

® Using Whiting's data, Snow calculated the death rate

» Southwark and Vauxhall: 71 cholera deaths/10,000 homes

» Lambeth: 5 cholera deaths/10,000 homes
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DD Estimation: Early Examples

John Snow’s Grand Experiment:

® Mortality data showed that very few cholera deaths were reported in
areas of London that were only supplied by the Lambeth Waterworks

® Snow hired John Whiting to visit the homes of the deceased to
determine which company (if any) supplied their drinking water

® Using Whiting's data, Snow calculated the death rate

» Southwark and Vauxhall: 71 cholera deaths/10,000 homes
» Lambeth: 5 cholera deaths/10,000 homes

® Southwark and Vauxhall responsible for 286 of 334 deaths

» Southwark and Vauxhall moved their intake upriver in 1855
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DD Estimation: Early Examples

In the 1840s, observers of Vienna's maternity hospital noted that death
rates from postpartum infections were higher in one wing than the other

® Division 1 patients were attended by doctors and trainee doctors

® Division 2 patients were attended by midwives and trainee midwives
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DD Estimation: Early Examples

In the 1840s, observers of Vienna's maternity hospital noted that death
rates from postpartum infections were higher in one wing than the other

® Division 1 patients were attended by doctors and trainee doctors

® Division 2 patients were attended by midwives and trainee midwives

Ignaz Semmelweis noted that the difference emerged in 1841, when the
hospital moved to an “anatomical” training program involving cadavers

® Doctors received new training; midwives never handled cadavers

® Did the transference of “cadaveric particles” explain the death rate?
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DD Estimation: Early Examples

In the 1840s, observers of Vienna's maternity hospital noted that death
rates from postpartum infections were higher in one wing than the other

® Division 1 patients were attended by doctors and trainee doctors

® Division 2 patients were attended by midwives and trainee midwives

Ignaz Semmelweis noted that the difference emerged in 1841, when the
hospital moved to an “anatomical” training program involving cadavers

® Doctors received new training; midwives never handled cadavers

® Did the transference of “cadaveric particles” explain the death rate?
Semmelweis proposed an intervention: hand-washing with chlorine

® Policy implemented in May of 1847
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DD Estimation: Early Examples

Physicians’ Division

Midwives' Division

Deaths Deaths
Year Births No. % Births No. %
1841 3036 237 7.7 2442 86 35
1842 3287 518 158 2659 202 75
1843 3060 274 89 2739 169 6.2
1844 3157 260 82 2956 68 23
1845 3492 241 6.8 3241 66 2.03
1846 4010 459 11.4 3754 105 7
1847 3306 32 0.9
January—May 2134 120 5.6
Intervention introduced in May
June—December 1841 56 3.04
1848 3556 45 1.27 3219 43 133
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DD Estimation: Early Examples

BULLETIN OF THE
U. S. BUREAU OF LABOR STATISTICS.

WHOLE NO. 176. WASHINGTON. JULY, (915,

EFFECT OF MINIMUM-WAGE DETERMINATIONS IN
OREGON.'

BY MARIE L. OBENAUER AND BERTHA VON DER NIENBURG.

Source: Obenauer and Nienburg (1915)
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DD Estimation: Early Examples

In 1913, Oregon increased the minimum wage for experienced women
to $9.25 per week, with a maximum of 50 hours of work per week

® Minimum wage for inexperienced women (and girls) also increased,
but was new minimum ($6/week) not seen as a binding constraint

® Obenauer and Nienburg obtain HR records of 40 firms

® Compare employment of experienced women before after minimum
wage to law to employment of girls, inexperienced women, men
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DD Estimation: Early Examples

TaBLE 1.—~ESTABLISHMENTS COVERED IN THE INVESTIGATION AND WOMEN AND
MEN EMPLOYED DURING PERIOD STUDIED IN 1914.
[This table does not include extra male or female help whose identity from week 1o week could not be
whnse’reguh‘r lgdp cm”wlmm penin of mm‘?'dﬁ last da; mx'ulz poriod
o] g of & new ent on the of the
covered in the investfmm on.] v
ot e
Numper | Bk, dig perod
Type of store. m"t‘s
covered.
‘Women
and girls, | Men.
PORTLAND.
Department, Mmsmwmtm 6 1,345 802
}?ocialty stA dry 1n "181 9
16 2 17
Total......... . 3 1,546 808
SALEM,
Dry-goods, specialty, and 5 and 10 cent stores........ P 7 26 34
Grand total.....veeeeeenrrnee sttt ee e ) 1,602 202
1 See mote !, 8 57
2 One firm, m,wm&xm,spmuddmmtsm,ummm Federal agents access to
their records. They offered to furnis] suwment but the Bureau did not regard this as com-
parable with materlal obtained direct f other ’ books.

Source: Obenauer and Nienburg (1915)
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DD Estimation: Early Examples

TABLE 1

EMPLOYMENT CHANGES IN PORTLAND RETAIL STORES, 1913-1914

Girls Ratio Women Ratio Women
Men (Age 16-18)  (Girls/Men)  (Age > 18)  (Women/Men)  Age Unknown
Before (Mar/Ap 1913) 940 138 1468 1543 1.641 152
After Mar/Ap 1914) 868 160 1843 1327 1.529 59
Change 72 22 .0375 -216 -0.113 -93
% Change —T7.7% 15.9% 23.6% —14% —6.3% —61.2%

Source: Obenaner and Nienburg (1915, Table 3, pages 14-15).

Source: Kennan (1995)
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Difference-in-Differences Estimation

Treatment | Comparison

Pre- Program Y ;rrgatment \% pcroempanson
\/ treatment o, comparison
Post-Program Yooet Y post

Intuitively, diff-in-diff estimation is just a comparison of 4 cell-level means

® Only one cell is treated: Treatment x Post-Program
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Difference-in-Differences Estimation

The assumption underlying diff-in-diff estimation is that, in the absence
of the program, individual i's outcome at time t is given by:

E[Y,'|D,':0,t:7']=’7,'+)\7-

UMD Economics 626: Applied Microeconomics Lecture 3: Difference-in-Differences, Slide 15



Difference-in-Differences Estimation

The assumption underlying diff-in-diff estimation is that, in the absence
of the program, individual i's outcome at time t is given by:

E[Y,'|D,':0,t:7'] =5+ Ar

There are two implicit identifying assumptions here:

® Selection bias relates to fixed characteristics of individuals (;)
» The magnitude of the selection bias term isn't changing over time

® Time trend (\;) same for treatment and control groups
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Difference-in-Differences Estimation

The assumption underlying diff-in-diff estimation is that, in the absence
of the program, individual i's outcome at time t is given by:

E[Y,'|D,':0,t:7'] =5+ Ar

There are two implicit identifying assumptions here:

® Selection bias relates to fixed characteristics of individuals (;)
» The magnitude of the selection bias term isn't changing over time

® Time trend (\;) same for treatment and control groups
Both necessary conditions for identification in diff-in-diff estimation

® Referred to as the common trends assumption
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Difference-in-Differences Estimation

In the absence of the program, i's outcome at time 7 is:

E[Yo,'|D,' = O,tZT] 2’7;—1-)\7—
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Difference-in-Differences Estimation

In the absence of the program, i's outcome at time 7 is:

E[Yo,'ID,' = O,t = T] =i +)\7—

Outcomes in the comparison group:

E[V5™™"] = E[Yoi| Di = 0,t = 1] = E[|D; = 0] + A

E[Vyeit?™"] = E[Yoi|Di = 0, t = 2] = E[i|Di = 0] + X2
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Difference-in-Differences Estimation

In the absence of the program, i's outcome at time 7 is:

E[YO,"D,' = O,t:T] :’Yi‘i‘)\T

Outcomes in the comparison group:

E[Vpcrzmparison] — E[Yoi|Di =0,t= 1] = E[fy,-|D,- = O] + X\

E[Vyeit?™"] = E[Yoi|Di = 0, t = 2] = E[i|Di = 0] + X2

The comparison group allows us to estimate the time trend:

E[Yor?"™"] — E[Yae""*"] = E[yi|Di = 0] + X2 — (E[7i|Di = 0] + 1)

=X—A\
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Difference-in-Differences Estimation

Let § denote the true impact of the program:
6= E[Yl,'lD,' = ].7 t= T] — E[Yo,’|D,‘ = 1, t= T]

which does not depend on the time period or i's characteristics
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Difference-in-Differences Estimation

Let § denote the true impact of the program:

§=E[Yu|Di=1,t = 7] — E[Yoi|D; = 1,t = 7]
which does not depend on the time period or i's characteristics
Outcomes in the treatment group:

E[Yye™™ = E[Yoi|Dj = 1,t = 1] = E[i|D; = 1] + \1

E[Yaa™™ = E[Yu|D; = 1,t = 2] = E[vi|Di = 1] + 6 + X2
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Difference-in-Differences Estimation

Let § denote the true impact of the program:
§=E[Yu|Di=1,t = 7] — E[Yoi|D; = 1,t = 7]
which does not depend on the time period or i's characteristics
Outcomes in the treatment group:
E[Yye™™ = E[Yoi|Dj = 1,t = 1] = E[i|D; = 1] + \1
E[Ypoid™™ = E[Yu|Di = 1,t = 2] = E[vi|D; = 1] + 6 + X2

Differences in outcomes pre-treatment vs. post treatment cannot be
attributed to the program; treatment effect is conflated with time trend
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Difference-in-Differences Estimation

If we were to calculate a pre-vs-post estimator, we'd have:

E[Ypoi ™" = E[Ype™™™] = E[yi|D; = 1] + 6 + X2 — (E[wi|D; = 1] + A1)

=0+ — A1
——

time trend
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Difference-in-Differences Estimation

If we were to calculate a pre-vs-post estimator, we'd have:

E[Ypoi ™" = E[Ype™™™] = E[yi|D; = 1] + 6 + X2 — (E[wi|D; = 1] + A1)

=0+ — A1
——

time trend

If we calculated a treatment vs. comparison estimator, we'd have:

E[Ypol™™] — E[YeeuP™"] = E[vi|Di = 1] + 6 + X2 — (E[yi| Di = 0] + X2)

=0+ E[yi|Di = 1] — E[i|Di = 0]

selection bias
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Difference-in-Differences Estimation

Substituting in the terms from our model:
DD = V;;iitment _ V;::atment _ (V;gsr:rparison _ ?’;Zmparison)
= E[Yl,'lD,' = ].7 t= 2] — E[Yo,'|D,' = 1, t= 1]
— (E[Yo,'lD,' = 0, t= 2] — E[Y0;|D,' = 07 t= 1])

= E[’y;lD,' = ].] +0+ A — (E[’y,'lD,‘ = 1] + )\1)

- {E[’y;|D,- =0+ X — (E[’Yf|Di =0]+ Al)]
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Difference-in-Differences Estimation

Substituting in the terms from our model:
DD — V;gesitment . V;::atment _ (V;g:tqpaﬁson _ \_/pcr(;mparison)
= E[Yy|D;=1,t =2] — E[Yoi|Di = 1,t = 1]
- (E[Yo,-|D,- =0,t=2]— E[Yo|D; = 0,t = 1])
= E[yilDi = 1] + 6 4 X2 — (E[v|Di = 1] + \1)
- {E['y;ID; = 0]+ — (E[7;|D,- = 0] + Al)]
=4

DD estimation recovers the true impact of the program on participants
(as long as the common trends assumption isn't violated)
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Difference-in-Differences Estimation

DD does not rely on assumption of homogeneous treatment effects

® When treatment effects are homogeneous, DD estimation yields
average treatment effect on the treated (ATT)

® Averages across treated units and over time

» When impacts change over time (within treated units), DD estimate
of treatment effect may depend on choice of evaluation window
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Example: A Natural Experiment in Education

In a famous paper in the American Economic Review, Esther Duflo
examines the impacts of a large school construction program in Indonesia

Schooling and Labor Market Consequences of School
Construction in Indonesia: Evidence from
an Unusual Policy Experiment

By EsTHER DurLO*

Between 1973 and 1978, the Indonesian government engaged in one of the largest
school construction programs on record. Combining differences across regions in
the number of schools constructed with differences across cohorts induced by the
timing of the program suggests that each primary school constructed per 1,000
children led to an average increase of 0.12 to 0.19 years of education, as well as a
1.5 10 2.7 percent increase in wages. This implies estimates of economic returns to
education ranging from 6.8 to 10.6 percent. (JEL 12, J31, O15, 022)
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Example: A Natural Experiment in Education

The Sekolar Dasar INPRES program (1973-1979):

® Qil crisis creates large windfall for Indonesia
® Suharto uses oil money to fund school construction
® Close to 62,000 schools built by national gov't
> Approximately 1 school built per 500 school-age children
® More schools built in areas which started with fewer schools

® Schools intended to promote equality, national identity
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The Return to Education in Indonesia

Do children who were born into areas with more newly built INPRES
primary schools get more education? Do they earn more as adults?
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The Return to Education in Indonesia

Do children who were born into areas with more newly built INPRES
primary schools get more education? Do they earn more as adults?

Strategy: difference-in-differences estimation

® Data on children born before and after program (pre vs. post)
» Children aged 12 and up in 1974 did not benefit from program
» Children aged 6 and under were young enough to be treated

® Data on children born in communities where many schools were
built (treatment), those where few schools were built (comparison)

> Partition sample based on residuals from a regression of the number
of schools built (per district) on the number of school-aged children

e Difference-in-differences estimate of program impact compares
pre vs. post differences in treatment vs. comparison communities
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The Return to Education in Indonesia
The simplest difference-in-differences estimator is:

DD = ?treatment _ Vtreatment [ \ycomparison ?compar/son
— ! post pre post pre
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The Return to Education in Indonesia

The simplest difference-in-differences estimator is:

DD = ?treatment _ ?treatment _

post

pre

post pre

y,comparison _ Vcomparison)

Dependent Variable: Years of Schooling

Many Schools Built | Few Schools Built | Difference
Over 11 in 1974 8.02 9.40 -1.38
Under 7 in 1974 8.49 9.76 -1.27
Difference 0.47 0.36 0.12

Difference-in-differences estimation compares the change in years of
schooling (i.e. the pre vs. post estimate) in treatment, control areas

® Program areas increased faster than comparison areas

® Difference is not statistically significant
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The Return to Education in Indonesia
The simplest difference-in-differences estimator is:

DD = ?treatment _ Vtreatment [ \ycomparison ?compar/son
— ! post pre post pre
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The Return to Education in Indonesia

The simplest difference-in-differences estimator is:

DD = ?treatment _ ?treatment _

post

pre

Dependent Variable: Log (Wages)

post pre

y,comparison _ Vcomparison)

Many Schools Built | Few Schools Built | Difference
Over 11 in 1974 6.87 7.02 -0.15
Under 7 in 1974 6.61 6.73 -0.12
Difference -0.26 -0.29 0.026

Difference-in-differences estimation compares the change in the log of
adult wages (i.e. the pre vs. post estimate) in treatment, control areas

® Program had a modest impact on adult wages

® Difference is not statistically significant
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DD in a Regression Framework



DD in a Regression Framework

To implement diff-in-diff in a regression framework, we estimate:
Yie = a+ BD; + (Post, + 6 (D;  Post,) + e:.c
where:
® Post; is an indicator equal to 1 if t =2
® § is the coefficient of interest (the treatment effect)
® a = E[v;|D; = 0] + Ay — pre-program mean in comparison group
® 3= E[vi|D; = 1] — E[v;|D; = 0] — selection bias

® (= )Xy — A\; — time trend
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DD in a Regression Framework

Pooled OLS specification is equivalent to first differences:
Yiza—=Yii=n+7Di +eir
where:
® Yi» — Y1 is the change (pre vs. post) in the outcome of interest
® ~ is the coefficient of interest (the treatment effect)

® 7 is the time trend
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DD in a Regression Framework

We can also implement diff-in-diff in a panel data framework when more
than two periods of data are available; this can increase statistical power*

Yie=a+n+vi+vyDi:+eir
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DD in a Regression Framework

We can also implement diff-in-diff in a panel data framework when more
than two periods of data are available; this can increase statistical power*

Yie=a+n +vi+vyDi:+€i
with some caveats:

® Variation in treatment timing?
® Allows for a credible defense of the common trends assumption
» Unless the common trends assumption is violated

® Serial correlation in treatment and outcome variable is a problem
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DD in a Regression Framework

y ——e—— Treatment
4 Control

PRE POST

time
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DD in a Regression Framework

Y| —e— Treatment
~——4—— Control

PRE POST

time

UMD Economics 626: Applied Microeconomics Lecture 3: Difference-in-Differences, Slide 31



DD in a Regression Framework

Event study framework includes dummies for each post-treatment period:

Yie=a+n +ve+7Dlit +7D2;: +7vD3i: + ... +¢€is
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DD in a Regression Framework

Event study framework includes dummies for each post-treatment period:

Yie=a+n +vi+7Dli: +7D2i; +vD3i:+ ... +¢€ir

When treatment intensity is a continuous variable:

Yi+ = a + Blntensity; + ( Post; + 6 (Intensity; x Post:) + €i ¢
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Example: A Natural Experiment in Education

Main empirical specification in Duflo (2001):
Siik = ao+ nj + Bk + v (Intensity; x Young;) + C;d + €iji

where:

Sijk = education of individual i born in region j in year k

® 7); = region of birth fixed effect

® 3, = year of birth fixed effect

® Young; = dummy for being 6 or younger in 1974 (treatment group)
® Intensity; = INPRES schools per thousand school-aged children

® C; = a vector of region-specific controls (that change over time)
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Example: A Natural Experiment in Education

Dependent Variable: Years of Education

OLS  OLS  OLS
Obs. 1) (2) (3)

Panel A: Entire Sample
Intensity; * Young; 78,470 0.124 0.150 0.188
(0.025) (0.026) (0.029)

Panel B: Sample of Wage Earners
Intensity; * Young; 31,061  0.196 0.199 0.259
(0.042) (0.043) (0.050)

Controls Included:
YOBsxenrollment rate in 1971 No Yes Yes
YOB:sother INPRES programs No No Yes

Sample includes individuals aged 2 to 6 or 12 to 17 in 1974. All Specifications include
region of birth dummies, year of birth dummies, and interactions between the year of
birth dummis and the number of children in the region of birth (in 1971). Standard
errors are in parentheses.
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Example: A Natural Experiment in Education

Dependent Variable: Log Hourly Wages (as Adults)

OLs  OLS  OLS
Obs. (1) (2) (3)

Panel A: Sample of Wage Earners
Intensity; * Young; 31,061 0.0147 0.0172 0.027
(0.007) (0.007) (0.008)

Controls Included:
YOBs=xenrollment rate in 1971 No Yes Yes
YOB:sother INPRES programs No No Yes

Sample includes individuals aged 2 to 6 or 12 to 17 in 1974. All Specifications include
region of birth dummies, year of birth dummies, and interactions between the year of
birth dummis and the number of children in the region of birth (in 1971). Standard
errors are in parentheses.
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Malaria Eradication as a Natural Experiment

Malaria kills about 800,000 people per year

® Most are African children
® Repeated bouts of malaria may also reduce overall child health
® Countries with malaria are substantially poorer than other countries,

but it is not clear whether malaria is the cause or the effect
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Malaria Eradication as a Natural Experiment

A MALARIA MOSQUITO

* SLEEP UNDER A NET| % KEEP IT
REPAIRED | % TUCK IT INI %

BE SURE NO MOSQUITO I INSIDE
You

o
HIGHT THE PLR/L BEHIND THE LINES

Organized efforts to eradicate malaria are a natural experiment

® First the US (1920s) and then many Latin American countries
(1950s) launched major (and successful) eradication campaigns

® Compare trends in adult income by birth cohort in regions which did,
did not see major reductions in malaria because of campaigns
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Malaria Eradication as a Natural Experiment

Malaria Eradication in the Americas: A Retrospective
Analysis of Childhood Exposure’

By HoYT BLEAKLEY*

This study uses the malaria-eradication campaigns in the United
States (circa 1920) and in Brazil, Colombia, and Mexico (circa 1955)
to measure how much childhood exposure to malaria depresses
labor productivity. The campaigns began because of advances in
health technology, which mitigates concerns about reverse causality.
Malarious areas saw large drops in the disease thereafter. Relative
to non-malarious areas, cohorts born after eradication had higher
income as adults than the preceding generation. These cross-cohort
changes coincided with childhood exposure to the campaigns rather
than to pre-existing trends. Estimates suggest a substantial, though
not predominant, role for malaria in explaining cross-region differ-
ences in income. (JEL 112,118, J13, O15)
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Malaria Eradication as a Natural Experiment

Colombia’s malaria eradication campaign began in in the late 1950s. ..

Panel A. Large decline in malaria following onset of spraying campaign
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Malaria Eradication as a Natural Experiment

Colombia’s malaria eradication campaign began in in the late 1950s. . .

Panel A. Large decline in malaria following onset of spraying campaign
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... and led to a huge decline in malaria morbidity
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Malaria Eradication as a Natural Experiment

Areas with highest pre-program prevalence saw largest declines in malaria

Panel B. Highly infected areas saw greater declines in malaria
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FIGURE 1. MALARIA INCIDENCE BEFORE AND AFTER THE ERADICATION CAMPAIGN, COLOMBIA
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Estimation Strategy

In this framework, treatment is a continuous variable

® Areas with higher pre-intervention malaria prevalence were, in
essence “treated” more intensely by the eradication program

® Malaria-free areas should not benefit from eradication

® They can be used (implicitly) to measure the time trend
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Estimation Strategy

In this framework, treatment is a continuous variable

® Areas with higher pre-intervention malaria prevalence were, in
essence “treated” more intensely by the eradication program

® Malaria-free areas should not benefit from eradication

® They can be used (implicitly) to measure the time trend
Exposure (during childhood) also depends on one's year of birth

® Colombians born after 1957 were fully exposed to program

» Did not suffer from chronic malaria in their early childhood

» Did not miss school because of malaria

® Colombians born before 1940 were adults by the time the
eradication campaign began, serve as the comparison group
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Estimation Strategy

Regression specification:
Y post — Yjpre = &+ BM; pre + 6 X pre + €
where
® Yj . is an outcome of interest (eg literacy)
® M; pre is pre-eradication malaria prevalence
® X; pre is a vector of region-level controls

® ¢ is the noise term
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Regression specification:

The Impact of Childhood Exposure to Malaria

Yj,post - \/j,pre =a+ Ble,pre + 5)<j,pre +€j

Malaria ecology (Poveda)

Malaria ecology (Mellinger)

Dependent variables: Years of Income Years of Income
Differences across cohorts in... Literacy  schooling index Literacy  schooling index
Panel A. Alternative controls
Additional controls:
None (basic specification) 0.168* 0.065* . 0.064 .
(0.088) (0.011) (0.016) (0.108) (0.014)
Conflict 0.175% 0.063%* . 0.068 0.0467#
(0.090) (0.011) (0.016) (0.110) (0.014)
Economic activity 0.194% .043 0.156
(0.089) (0.013) (0.110)
Other diseases 0.180%* L0587 0.057
(0.089) (0.016) (0.114)
Full controls 0.165% .04 0.076
(0.095) (0.015) (0.117)
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Defending the Common Trends Assumption



The Common Trends Assumption

Diff-in-diff does not identify the treatment effect if treatment and
comparison groups were on different trajectories prior to the program

® This is the common trends assumption
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The Common Trends Assumption

Diff-in-diff does not identify the treatment effect if treatment and
comparison groups were on different trajectories prior to the program

® This is the common trends assumption
Remember the assumptions underlying diff-in-diff estimation:

® Selection bias relates to fixed characteristics of individuals (7y;)

® Time trend (\;) same for treatment and control groups
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The Common Trends Assumption

Diff-in-diff does not identify the treatment effect if treatment and
comparison groups were on different trajectories prior to the program

® This is the common trends assumption

Remember the assumptions underlying diff-in-diff estimation:

® Selection bias relates to fixed characteristics of individuals (7y;)

® Time trend (\;) same for treatment and control groups

These assumptions guarantee that the common trends assumption is
satisfied, but they cannot be tested directly — we have to trust!

® As with any identification strategy, it is important to think carefully
about whether it checks out both intuitively and econometrically
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The Common Trends Assumption

Percent Completing College
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Sometimes, the common trends assumption is clearly OK
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The Common Trends Assumption

Income.
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Other times, the common trends assumption is fairly clearly violated
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The Common Trends Assumption

Or

is it? DD is robust to transformations of the outcome variable
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Defending the Common Trends Assumption

Three approaches:

1. A compelling graph
2. A falsification test or, analogously, a direct test in panel data
3. Controlling for time trends directly

» Drawback: identification comes from functional form assumption
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Defending the Common Trends Assumption

Three approaches:

1. A compelling graph
2. A falsification test or, analogously, a direct test in panel data
3. Controlling for time trends directly

» Drawback: identification comes from functional form assumption

None of these approaches are possible with two periods of data
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Approach #1: DD Porn

Figure 4: Compliance Effect — Retail vs. Wholesale

a. Raw data: reported revenue changes

o4

T T T T T T T T T
2004m1 2005m1 2006m1 2007m1 2008m1 2009m1 2010m1 2011m1 2012m1

—=—— Retal ——%—— Wholesale

Source: Naritomi (2015)
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Approach #2: A Falsification Test

Dependent Variable: Years of Education

OLS  OLS  OLS
Obs. 1) (2) (3)

Panel A: Entire Sample
Intensity; * Younger; 78,488 0.009 0.018 0.008
(0.026) (0.027) (0.030)

Panel B: Sample of Wage Earners
Intensity; * Younger; 30,255  0.012 0.024 0.079
(0.048) (0.048) (0.056)

Controls Included:
YOBsxenrollment rate in 1971 No Yes Yes
YOB:sother INPRES programs No No Yes

Sample includes individuals aged 12 to 24 in 1974. All Specifications include region
of birth dummies, year of birth dummies, and interactions between the year of birth
dummis and the number of children in the region of birth (in 1971). Standard errors are
in parentheses.
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Approach #2: A Falsification

Educ.of young cohort-Educ. of old cohort

Educ. of old cohort-Educ. of very okd cohort

A1: Experiment of interest: education

0 2 4 6 8
Number of INPRES schools per capita

B1: Control experiment: education

10

0 2 4 6 8
Number of INPRES schools per capita

UMD Economics 626: Applied Microeconomics

10

Log(wages) of young cohort-Log(wages) of old cohort

Log(wages) of old cohort-Log(wages) of very old cohort
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Test

A2: Experiment of interest: log(wages)

0 2 4 6 8 10
Number of INPRES schools per capita

B2: Control experiment: log(wages)
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Diff-in-Diff in a Panel Data Framework



Variation in Treatment Timing

Example: counties introduced food stamps at different times

1961: Piol
s0- programs
initated

60+ 1973 Amend:
Mandatory
FSP by 1975

Counties participating in FSP (weighted %)

i60 | fe  eb4 19 1o 70 te2 174

v Wi o Counmrs s 901975 FiGure 2. Foon Stamp ProGraw STart DATE, v County, 19611974
Source: Authors® abulations of food stamp administeative data (US Department of Agriculture, various years) Notes: Authors’ tabulations of food stamp administrative data (US Department of Agriculture, various years). The
‘Counties are weighted by theie 1960 population. shading corresponds to the county FSP start date, where darker shading indicates later county implementation

Source: Almond, Hoynes, and Schanzenbach (AER, 2016)
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Variation in Treatment Timing

Example: states adopted Medicaid at different times

196601 198204

Figure2.
Medieaid Adoption by Quarter

Notes: Adoption dates come from the Department of Health Education and Welfare (1970)
& Social Security Administration (2013). The map is shaded relative to the quarter of
adoption and states are labeled with the month and year of adoption.

Source: Boudreaux, Golberstein, and McAlpine (Journal of Health Economics, 2016)
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Variation in Treatment Timing

Example: counties opened community health centers at different times

I 1965-1966
I 10671968
I 19691970
I 1971-1972
[ 1973-1974
[ 1975-1980

FIGURE 3. ESTABLISHMENT OF COMMUNITY HEALTH CENTERS BY COUNTY OF SERVICE DELIVERY, 1965-1980

Note: Dates are the first year that a CHC was established in the county.
Source: Information on CHCs drawn from NACAP and PHS reports.

Source: Bailey and Goodman-Bacon (AER, 2015)
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Fixed Effects Estimates of 3PP

Yii =i+ + BPPDi + &4
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Fixed Effects Estimates of 3°°

Yii = o + v + BDDDit + €4

unit fixed effects time fixed effects treatment dummy
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Fixed Effects Estimates of 3PP

What exactly is 3PP?

Yii = o + ¢ + 3PP Dy + &4

unit fixed effects time fixed effects treatment dummy
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Fixed Effects Estimates of 3°°

Frisch-Waugh (1933):
Two-way fixed effects regression is equivalent to univariate regression:

Yit = Dit + Cti

where

and
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Fixed Effects Estimates of 3°°

Frisch-Waugh (1933):
Two-way fixed effects regression is equivalent to univariate regression:

Yit = ﬁit + Cti

where

and

Which is cool, but doesn’t really tell us what the estimand is
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Decomposition into Timing Groups

——e—— Early Timing Group (A)

Late Timing Group (B)

Never-Treated Group (C)

time

Goodman-Bacon (2019): panel with variation in treatment timing can be
decomposed into timing groups reflecting observed onset of treatment
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Decomposition into Timing Groups

——e—— Early Timing Group (A)

A~ Late Timing Group (B) 'M”'X.
———— Never-Treated Group (C)

time

Example: with three timing groups (one of which is never treated),
we can construct three timing windows (pre, middle, post or t = 1,2, 3)
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Decomposition into Standard 2 x 2 DDs

Group A vs. Group C Group B vs. Group C
.n"'" O ,,n""
Jotcant ot Joeant
”,u"‘ it ”,“"‘
POt ant JOUetant
-t o
o pre post v pre post
T T
Group A vs. Group B
pre post pre post
T T
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Decomposition into Standard 2 x 2 DDs

Group A vs. Group C

——e—— Early Timing Group (A)

Never-Treated Group (C)

pre post

time

We know the DD estimate of the treatment effect for each timing group:

Ai\’é’ _ (‘:OST . VgOST) . (VADRE . VgRE)
= (W) - (- )
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Decomposition into Standard 2 x 2 DDs

Group B vs. Group A

——e—— Early Timing Group (A)

Never-Treated Group (C) /

pre post

time

We know the DD estimate of the treatment effect for each timing group:

Agg _ (-‘gosr _ y,}\vosr) _ (Vé’RE - ?A-"RE)

= (V- - (V- )
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DD Decomposition Theorem (aka D® Theorem)

Theorem

Consider a data set comprising K timing groups ordered by the time at
which they first receive treatment and a maximum of one never-treated
group, U. The OLS estimate from a two-way fixed effects regression is:

3PP = Z swi + Z Z [%‘BZD + %kBjLzD}

k£U k#U j>k

In other words, the DD estimate from a two-way fixed effects regression
is a weighted average of the (well-understood) 2 x 2 DD estimates
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DD Decomposition Theorem (aka D® Theorem)

Weights depend on sample size, variance of treatment w/in each DD:

2
Sku = [7('“( )

\75 :| nky (]. — nku) Dk(l — Dk)

» D
Vary

Di—D;\ (1-D
(1 — "kj)( lk_ D,J) (1 Z Dk.)
J J

where niis..., ngis ..., and Dy is ...
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DD Decomposition Theorem (aka D*® Theorem)

Weights depend on sample size, variance of treatment w/in each DD:

VD
VA?’EU
_ o _ _ _
((nc+ ) (1= D)) (Dk—D,—) (1—Dk)
Sk = — (1 — ng; = -
o 7z (=) \ 75, ) \1=5,
Varl)
_ o _
((nk =+ nj) Dk) Dj Dy — Dj
= | | (1 — )2
Sk 5 i ( Nij) 5, 5,
Varl
where ny is..., ngis ..., and Dyis ...
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Implications of the D3 Theorem

1. When treatment effects are homogeneous, PP is the ATE

2. When treatment effects are heterogeneous across units (not time),
BPP is a variance-weighted treatment effect that is not the ATE

= Weights on timing groups are sums of sxy, s terms
3. When treatment effects change over time, PP is biased

= Changes in treatment effect bias DD coefficient

= Event study, stacked DD more appropriate
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Implications of the D3 Theorem

DD in a potential outcomes framework assuming common trends:

Yo,it if Dip =0
Yit - ’ .
Yo,it + 0i if Dy =1
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Implications of the D3 Theorem

DD in a potential outcomes framework assuming common trends:

Yit - .
Yo,ie + 0i if Dip =1

{YM if D =0
BkDL? and BijD (where k < j) are familiar, but BJQD is different:

Bj{:kJD _ )‘/OI?J_OST + 5J_POST _ (VOITEST + SL’OST) _ [?O;ZRE _ (\701?55 + SERE)}

_ SJPOST + [ (VOI-:’JQST . V{}(OST) . (VOZRE . \701?55)] + (ngE . SfOST)

common trends Ay
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Takeaways

1. Stack the 2 x 2 DDs to asses common trends (visually)
= Trends should look similar before and after treatment
= Treatment effect should be a level shift, no a trend break
= How much weight is placed on problematic timing groups?
2. Plot the relationship between the 2 x 2 DD estimates, weights
= No heterogeneity? No problems!

= Heterogeneity across units is an object of interest
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