ECON 626: Applied Microeconomics

Lecture 2:

Regression Basics and Heteroskedasticity

Professors: Pamela Jakiela and Owen Ozier

One piece of probability/statistics

Variance of mean

Recall: For any independent random variables X and Y :

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Recall: For any constants a and b and random variable X :

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Thus, for independent random variables X_{i} each with variance σ^{2} :

$$
\operatorname{Var}\left(\sum_{i=1}^{i=N} X_{i}\right)=N \sigma^{2}
$$

And so

$$
\operatorname{Var}\left(\frac{1}{N} \sum_{i=1}^{i=N} X_{i}\right)=\frac{1}{N} \sigma^{2}
$$

Linear Algebra (quick review)

Multiplication

$$
\begin{gathered}
k\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
k \cdot a_{1} \\
k \cdot a_{2}
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=[1 \cdot 3+2 \cdot 4]=[11]=11} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}
\end{gathered}
$$

Multiplication, continued (handout version)

$$
\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{22}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
D_{11} a & D_{11} b \\
D_{22} c & D_{22} d
\end{array}\right]
$$

Suppose we want $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ to be the inverse of $\left[\begin{array}{cc}D_{11} & 0 \\ 0 & D_{22}\end{array}\right]$. That is,

$$
\left[\begin{array}{cc}
D_{11} a & D_{11} b \\
D_{22} c & D_{22} d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Four (simple) equations, four unknowns.

$$
\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{D_{11}} & 0 \\
0 & \frac{1}{D_{22}}
\end{array}\right]
$$

So inverting a diagonal matrix is easy. A general formula?

Inverses (2×2 case)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\underbrace{\frac{1}{a d-b c}}_{\text {determinant }}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Transpose

$$
\text { Let } \begin{aligned}
A= & {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] . \text { Let } B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] . A B=? } \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
15
\end{array}\right] }
\end{aligned}
$$

$\mathrm{BA}=$ "conformability error" but $\mathrm{B}^{\prime} \mathrm{A}^{\prime}=$

$$
\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]=\left[\begin{array}{ll}
6 & 15
\end{array}\right]
$$

Thus, $\mathrm{B}^{\prime} \mathrm{A}^{\prime}=(\mathrm{AB})^{\prime}$. $\left(\right.$ Note: A^{\prime} is sometimes written $\left.A^{T}.\right)$

Regression

Recall the basic regression (estimation) formula

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

But what is $\left(X^{\prime} X\right)^{-1}$? What does $\left(X^{\prime} X\right)^{-1} X^{\prime}$ do to y ?

Matrices' easy interpretation in "treatment" context

Suppose that we are interested in the relationship between outcome Y_{i} and a treatment indicator D_{i}. Regress the outcome on... the treatment indicator and a constant.

$$
X_{i}=\left[\begin{array}{ll}
D_{i} & 1
\end{array}\right]
$$

Suppose that half of N observations have $D_{i}=1$ and half have $D_{i}=0$.

$$
X=\left[\begin{array}{cc}
D_{1} & 1 \\
D_{2} & 1 \\
\ldots & \ldots \\
D_{\frac{N}{2}} & 1 \\
D_{\frac{N}{2}+1} & 1 \\
D_{\frac{N}{2}+2} & 1 \\
\ldots & \ldots \\
D_{N} & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
0 & 1 \\
\ldots & \cdots \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
\ldots & \cdots \\
1 & 1
\end{array}\right] ; Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{\frac{N}{2}} \\
Y_{\frac{N}{2}+1}^{2} \\
Y_{\frac{N}{2}+2} \\
\cdots \\
Y_{N}
\end{array}\right]
$$

Matrices' easy interpretation in "treatment" context

Recall that we're after

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

Set up $X^{\prime} X$:

$$
\left[\begin{array}{cccccccc}
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
0 & 1 \\
\ldots & \ldots \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
\ldots & \ldots \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]
$$

Matrices' easy interpretation in "treatment" context

Recall,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

So:

$$
\left[\begin{array}{ll}
\frac{N}{2} & \frac{N}{2} \\
\frac{N}{2} & N
\end{array}\right]^{-1}=\frac{1}{\frac{N^{2}}{2}-\frac{N^{2}}{4}}\left[\begin{array}{rr}
N & -\frac{N}{2} \\
-\frac{N}{2} & \frac{N}{2}
\end{array}\right]=\frac{2}{N}\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Easy way:

$$
\left(\frac{N}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\right)^{-1}=\frac{2}{N}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}=\frac{2}{N}\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Matrices' easy interpretation in "treatment" context

Recall we wanted to find: $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. What about $X^{\prime} y$?

$$
\begin{gathered}
{\left[\begin{array}{llllllll}
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{\frac{N}{2}} \\
Y_{\frac{N}{2}+1} \\
Y_{\frac{N}{2}+2}^{2} \\
\ldots \\
Y_{N}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=\frac{N}{2}+1}^{N} Y_{i} \\
\sum_{i=1}^{N} Y_{i}
\end{array}\right]} \\
=\left[\begin{array}{c}
\sum_{T} Y_{i} \\
\sum_{T} Y_{i}+\sum_{C} Y_{i}
\end{array}\right]
\end{gathered}
$$

Matrices' easy interpretation in "treatment" context

We can now compute:

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

$$
\begin{gathered}
\frac{2}{N}\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\sum_{T} Y_{i} \\
\sum_{T} Y_{i}+\sum_{C} Y_{i}
\end{array}\right]=\frac{2}{N}\left[\begin{array}{c}
2 \sum_{T} Y_{i}-\sum_{T} Y_{i}-\sum_{C} Y_{i} \\
-\sum_{T} Y_{i}+\sum_{T} Y_{i}+\sum_{C} Y_{i}
\end{array}\right] \\
=\frac{2}{N}\left[\begin{array}{c}
\sum_{T} Y_{i}-\sum_{C} Y_{i} \\
\sum_{C} Y_{i}
\end{array}\right]=\left[\begin{array}{c}
\bar{Y}_{T}-\bar{Y}_{C} \\
\bar{Y}_{C}
\end{array}\right]=\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{2}
\end{array}\right]=\hat{\beta}
\end{gathered}
$$

We just ran a regression. Now, on to the standard error! What will the dimensions of the variance-covariance matrix be?

Homoskedastic error

Recall the basic regression (estimation) formula

What is the variance of $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$?
First, re-write $\hat{\beta}$:

$$
\begin{gathered}
y=X \beta+e \\
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+e) \\
=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} e
\end{gathered}
$$

Structure of the error term, homoskedasticity

Ways of writing second term, $\left(X^{\prime} X\right)^{-1} X^{\prime} e$:

$$
\begin{aligned}
\left(X^{\prime} X\right)^{-1} X^{\prime} u & (C T \text { 4.11) with } E[u \mid X]=0 \text { (assumption ii p.73) } \\
{\left[\sum X_{i} X_{i}^{\prime}\right]^{-1} \sum X_{i} e_{i} } & \left(A P \text { p.45) with } E\left[X_{i} e_{i}\right]=0\right. \text { (mechanically) }
\end{aligned}
$$

Before proceeding to estimate variance, independent observations (CT p. 73 assumption ii) (assumptions and implication):

$$
E\left[u u^{\prime} \mid X\right]=\Omega=\operatorname{Diag}\left[\sigma_{i}^{2}\right]
$$

Under homoskedasticity, $\sigma_{i}^{2} \equiv \sigma^{2} \forall i$. Thus,

$$
\hat{\Omega}=\hat{\sigma}^{2} I
$$

A reasonable estimator, $\hat{\sigma}^{2}$, for $\sigma^{2}: \frac{1}{N-K} \sum_{N} u_{i}^{2}=\frac{1}{N-K}\left(\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}\right)$. (In this example, $K=2$.)

The variance-covariance matrix

For the variance, we write this quadratic form of the estimation error:

$$
\begin{gather*}
\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \quad\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Omega} X\left(X^{\prime} X\right)^{-1} \tag{CT4.21}
\end{gather*}
$$

Under homoskedasticity, our estimate, $\hat{\Omega}=\hat{\sigma}^{2} l$.

$$
\begin{gathered}
\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\sigma}^{2} I X\left(X^{\prime} X\right)^{-1} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} I X\left(X^{\prime} X\right)^{-1} \hat{\sigma}^{2} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \hat{\sigma}^{2} \\
\left(X^{\prime} X\right)^{-1} \hat{\sigma}^{2} \\
\frac{2}{N}\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right] \hat{\sigma}^{2}=\left(\frac{2}{N(N-K)}\right)\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left(\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}\right)
\end{gathered}
$$

We have an estimator for the basic variance-covariance matrix under homoskedasticity. What about heteroskedasticity?

Heteroskedasticity

Structure of the error term, revisited

Ways of writing second term, $\left(X^{\prime} X\right)^{-1} X^{\prime} e$:

$$
\begin{aligned}
\left(X^{\prime} X\right)^{-1} X^{\prime} u & (C T \text { 4.11) with } E[u \mid X]=0 \text { (assumption ii p.73) } \\
{\left[\sum X_{i} X_{i}^{\prime}\right]^{-1} \sum X_{i} e_{i} } & \left(\text { AP p.45) with } E\left[X_{i} e_{i}\right]=0\right. \text { (mechanically) }
\end{aligned}
$$

Before proceeding to estimate variance, independent observations (CT p. 73 assumption ii) (assumptions and implication):

$$
E\left[u u^{\prime} \mid X\right]=\Omega=\operatorname{Diag}\left[\sigma_{i}^{2}\right]
$$

So a reasonable estimator:

$$
\hat{\Omega}=\operatorname{Diag}\left[\hat{u}_{i}^{2}\right](C T \text { notation })=\operatorname{Diag}\left[\hat{e}_{i}^{2}\right](A P \text { notation })
$$

Why heteroskedasticity?

For the variance, we write this quadratic form of the estimation error:

$$
\begin{gather*}
\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right) \quad\left(\left(X^{\prime} X\right)^{-1} X^{\prime} u\right)^{\prime} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1} \\
\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Omega} X\left(X^{\prime} X\right)^{-1} \tag{CT4.21}\\
=\left(\sum x_{i} x_{i}^{\prime}\right)^{-1} \sum \hat{u}_{i}^{2} x_{i} X_{i}^{\prime}\left(\sum x_{i} x_{i}^{\prime}\right)^{-1} \tag{CT4.21}
\end{gather*}
$$

Note that AP 3.1.7 is written in expectations, in a formulation that leads to the variance of $\sqrt{N} \cdot \hat{\beta}$, just as CT 4.17 does:

$$
\text { (notation swap) } E\left[X_{i} X_{i}^{\prime}\right]^{-1} E\left[X_{i} X_{i}^{\prime} e_{i}^{2}\right] E\left[X_{i} X_{i}^{\prime}\right]^{-1} \quad(A P \text { 3.1.7) }
$$

Why heteroskedasticity?

$$
=\left[\begin{array}{llllllll}
& X^{\prime} \hat{\Omega} X \\
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1
\end{array}\right] \operatorname{Diag}\left[\hat{u}_{i}^{2}\right]\left[\begin{array}{cc}
0 & 1 \\
0 & 1 \\
\ldots & \ldots \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
\ldots & \ldots \\
1 & 1
\end{array}\right]
$$

My big fat greek ... diagonal matrix

$$
\hat{\Omega} X=\left[\begin{array}{cccccccc}
\hat{u}_{1}^{2} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & \hat{u}_{2}^{2} & \ldots & 0 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & \hat{u}_{\frac{N}{2}}^{2} & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & \hat{u}_{\frac{N}{2}+1}^{2} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \hat{u}_{\frac{N}{2}+2}^{2} & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & \hat{u}_{N}^{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
0 & 1 \\
\ldots & \ldots \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
\ldots & \ldots \\
1 & 1
\end{array}\right]
$$

Why heteroskedasticity?

$$
\hat{\Omega} X=\left[\begin{array}{cc}
0 & \hat{u}_{1}^{2} \\
0 & \hat{u}_{2}^{2} \\
\ldots & \ldots \\
0 & \hat{u}_{N}^{2} \\
\hat{u}_{N}^{2}+1 & \hat{u}_{N}^{2} \\
\hat{u}_{\frac{N}{2}+2}^{2} & \hat{u}_{\frac{N}{N}+2}^{2} \\
\ldots & \ldots \\
\ldots \hat{u}_{N}^{2} & \hat{u}_{N}^{2}
\end{array}\right]
$$

Why heteroskedasticity?

$$
\begin{aligned}
& X^{\prime} \hat{\Omega} X=\left[\begin{array}{llllllll}
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 & 1 & 1 & \ldots & 1
\end{array}\right]\left[\begin{array}{cc}
0 & \hat{u}_{1}^{2} \\
0 & \hat{u}_{2}^{2} \\
\ldots & \ldots \\
0 & \hat{u}_{N}^{2} \\
\hat{u}_{\frac{N}{2}+1}^{2} & \hat{u}_{\frac{N}{2}+1}^{2} \\
\hat{u}_{\frac{N}{2}+2}^{2} & \hat{u}_{\frac{N}{2}+2}^{2} \\
\ldots & \ldots \\
\hat{u}_{N}^{2} & \hat{u}_{N}^{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sum_{i=\frac{N}{2}+1}^{N} \hat{u}_{i}^{2} & \sum_{i=\frac{N}{2}+1}^{N} \hat{u}_{i}^{2} \\
\sum_{i=\frac{N}{2}+1}^{N} \hat{u}_{i}^{2} & \sum_{i=1}^{N} \hat{u}_{i}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\sum_{T} \hat{u}^{2} & \sum_{T} \hat{u}^{2} \\
\sum_{T} \hat{u}^{2} & \sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}
\end{array}\right]
\end{aligned}
$$

Why heteroskedasticity?

$$
\begin{gathered}
\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Omega} X\left(X^{\prime} X\right)^{-1} \\
\left(\frac{2}{N}\right)\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sum_{T} \hat{u}^{2} & \sum_{T} \hat{u}^{2} \\
\sum_{T} \hat{u}^{2} & \sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}
\end{array}\right]\left(\frac{2}{N}\right)\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right] \\
=\left(\frac{4}{N^{2}}\right)\left[\begin{array}{cc}
\sum_{T} \hat{u}^{2} & \sum_{T} \hat{u}^{2}-\sum_{C} \hat{u}^{2} \\
0 & \sum_{C} \hat{u}^{2}
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right] \\
=\left(\frac{4}{N^{2}}\right)\left[\begin{array}{cc}
\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2} & -\sum_{C} \hat{u}^{2} \\
-\sum_{C} \hat{u}^{2} & \sum_{C} \hat{u}^{2}
\end{array}\right]
\end{gathered}
$$

CT p.75: DOF correction w/empirical (not theoretical) basis, $\mathrm{N} /(\mathrm{N}-\mathrm{K})$

All formulas together, before plugging in K .

Estimated coefficients:

$$
\hat{\beta}=\left[\begin{array}{c}
\bar{Y}_{T}-\bar{Y}_{C} \\
\bar{Y}_{C}
\end{array}\right]
$$

Estimated VCV matrix under homoskedasticity:

$$
\left(\frac{2}{N(N-K)}\right)\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left(\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}\right)
$$

Estimated VCV matrix under heteroskedasticity:

$$
\left(\frac{4}{N(N-K)}\right)\left[\begin{array}{cc}
\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2} & -\sum_{C} \hat{u}^{2} \\
-\sum_{C} \hat{u}^{2} & \sum_{C} \hat{u}^{2}
\end{array}\right]
$$

All formulas together.

Estimated coefficients:

$$
\hat{\beta}=\left[\begin{array}{c}
\bar{Y}_{T}-\bar{Y}_{C} \\
\bar{Y}_{C}
\end{array}\right]
$$

Estimated VCV matrix under homoskedasticity:

$$
\left(\frac{2}{N(N-2)}\right)\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]\left(\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}\right)
$$

Estimated VCV matrix under heteroskedasticity:

$$
\left(\frac{4}{N(N-2)}\right)\left[\begin{array}{cc}
\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2} & -\sum_{C} \hat{u}^{2} \\
-\sum_{C} \hat{u}^{2} & \sum_{C} \hat{u}^{2}
\end{array}\right]
$$

General case, treating fraction p .

$$
\begin{gathered}
\left(X^{\prime} X\right)=N\left[\begin{array}{ll}
p & p \\
p & 1
\end{array}\right] \\
\left(X^{\prime} X\right)^{-1}=\frac{1}{p(1-p) N}\left[\begin{array}{cc}
1 & -p \\
-p & p
\end{array}\right]
\end{gathered}
$$

All formulas together, general case.

Estimated coefficients:

$$
\hat{\beta}=\left[\begin{array}{c}
\bar{Y}_{T}-\bar{Y}_{C} \\
\bar{Y}_{C}
\end{array}\right]
$$

Estimated VCV matrix under homoskedasticity:

$$
\left(\frac{1}{p(1-p) N(N-2)}\right)\left[\begin{array}{rr}
1 & -p \\
-p & p
\end{array}\right]\left(\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}\right)
$$

Estimated VCV matrix under heteroskedasticity:

$$
\left(\frac{1}{p^{2}(1-p)^{2} N(N-2)}\right)\left[\begin{array}{cc}
(1-p)^{2} \sum_{T} \hat{u}^{2}+p^{2} \sum_{C} \hat{u}^{2} & -p^{2} \sum_{C} \hat{u}^{2} \\
-p^{2} \sum_{C} \hat{u}^{2} & p^{2} \sum_{C} \hat{u}^{2}
\end{array}\right]
$$

Focus on the coefficient on treatment. (step 1)

Estimated coefficient: $\hat{\beta_{1}}=\bar{Y}_{T}-\bar{Y}_{C}$
Estimated variance of $\hat{\beta_{1}}$ under homoskedasticity:

$$
\frac{\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}}{p(1-p) N(N-2)}=\frac{\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}}{(N-2)}\left(\frac{1}{p(1-p) N}\right)
$$

Estimated variance of $\hat{\beta_{1}}$ under heteroskedasticity:

$$
\begin{gathered}
\frac{(1-p)^{2} \sum_{T} \hat{u}^{2}+p^{2} \sum_{C} \hat{u}^{2}}{p^{2}(1-p)^{2} N(N-2)}= \\
\frac{\sum_{T} \hat{u}^{2}}{p^{2} N(N-2)}+\frac{\sum_{C} \hat{u}^{2}}{(1-p)^{2} N(N-2)}
\end{gathered}
$$

Focus on the coefficient on treatment. (step 2)

Estimated coefficient: $\hat{\beta_{1}}=\bar{Y}_{T}-\bar{Y}_{C}$
Estimated variance of $\hat{\beta_{1}}$ under homoskedasticity:

$$
\frac{\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}}{p(1-p) N(N-2)}=\underbrace{\frac{\sum_{T} \hat{u}^{2}+\sum_{C} \hat{u}^{2}}{(N-2)}}_{\text {variance }}(\underbrace{\frac{1}{p N}}_{\text {averages }} \underbrace{+}_{\text {difference }} \underbrace{\frac{1}{(1-p) N}}_{\text {overages }})
$$

Estimated variance of $\hat{\beta_{1}}$ under heteroskedasticity:

$$
\frac{(1-p)^{2} \sum_{T} \hat{u}^{2}+p^{2} \sum_{C} \hat{u}^{2}}{p^{2}(1-p)^{2} N(N-2)}=
$$

$$
\underbrace{\frac{\sum_{T} \hat{u}^{2}}{p(N-2)}}_{\text {variance }} \underbrace{\left(\frac{1}{p N}\right)}_{\text {averages }} \underbrace{+}_{\text {diference of }} \underbrace{\frac{\sum_{C} \hat{u}^{2}}{(1-p)(N-2)}}_{\text {variance }} \underbrace{\left(\frac{1}{(1-p) N}\right)}_{\text {averages }}
$$

