ECON 626: Empirical Microeconomics

DD with Variation in Treatment Timing

Department of Economics University of Maryland Fall 2019

The do file ECON626-L3-A3-timing.do generates a simulated panel data set with N = 100 units observed over T = 100 periods, t = 1, ..., 100. The data set contains three timing groups. Group A accounts for one quarter of the sample; units in Group A begin receiving treatment at t = 41. Group B accounts for one quarter of the sample; units in Group B begin receiving treatment at t = 81. Units in Group C are never treated.

1. Before turning to the Stata program, it is helpful to calculate the weighting factors by hand.

(a) Use	the	inf	formation	above	to	complete	the	table:
----	-------	-----	-----	-----------	-------	---------------------	----------	-----	--------

Group	Parameter	Value
А	n_A	
В	n_B	
С	n_C	
А	\bar{D}_A	
В	\bar{D}_B	

(b) With three timing groups including one that is never treated, there are four 2 × 2 DD components: AC, BC, AB, and BA. Each treated vs. never-treated comparison receives weight:

$$s_{jC} = \left[(n_j + n_C)^2 n_{jC} \left(1 - n_{jC} \right) \bar{D}_j (1 - \bar{D}_j) \right] / \hat{V}^D \text{ for } j = A, B$$
(1)

where \hat{V}^D is the variance of the fixed-effects-adjusted treatment dummy (more on this later) and $n_{jC} = n_j/(n_j + n_c)$. The formulas for the weights on the timing group comparisons are slightly more complicated:

$$s_{AB} = \left[\left(\left(n_A + n_B \right) \left(1 - \bar{D}_B \right) \right)^2 n_{AB} \left(1 - n_{AB} \right) \left(\frac{\bar{D}_A - \bar{D}_B}{1 - \bar{D}_B} \right) \left(\frac{1 - \bar{D}_A}{1 - \bar{D}_B} \right) \right] / \hat{V}^{\bar{D}}$$
(2)

$$s_{BA} = \left[\left((n_A + n_B) \,\bar{D}_A \right)^2 n_{AB} (1 - n_{AB}) \frac{\bar{D}_B}{\bar{D}_A} \left(\frac{\bar{D}_A - \bar{D}_B}{\bar{D}_A} \right) \right] / \hat{V}^{\tilde{D}} \tag{3}$$

We don't have a simple formula for $\hat{V}^{\tilde{D}}$, but we know that the weights s_{AC} , s_{BC} , s_{AB} , and s_{BA} sum to one. This allows us to ignore $\hat{V}^{\tilde{D}}$ and calculate the numerator for each of the weighting factors. The tables below may be helpful in doing this.

- (c) Now calculate the actual weights s_{AC} , s_{BC} , s_{AB} , and s_{BA} by normalizing the weights calculated above so that they sum to one.
- (d) Consider a case here the treatment effect **on Group A** is equal to 10 and the treatment effect **on Group B** was equal to 5. In this context, what are the expected values of the estimated $\hat{\beta}$ in the four 2 × 2 DD estimates if the common trends assumption holds? (Hint: do not over-think this question; it is intended to be straightforward.)

(e) What is the expected value of $\hat{\beta}^{DD}$ from the fixed-effects DD model?

- 2. Now run ECON626-L3-A3-timing.do. Does the estimated coefficient match what you calculated in (1e)? Why or why not?
- 3. In real life, we would like to use a more efficient approach to calculating s_{AC} , s_{BC} , s_{AB} , and s_{BA} . This approach relies on the fact that the numerators in the weights are a product of two components: (i) a term reflecting the sample size of each 2×2 DD (as a share of NT) and (ii) the fixed-effects-adjusted variance of the treatment variable within each 2×2 DD sample. So, for example,

$$s_{jC} = [(n_j + n_C)^2 \underbrace{n_{jC} (1 - n_{jC}) \bar{D}_j (1 - \bar{D}_j)}_{\hat{V}_{jC}^{\bar{D}}}] / \hat{V}^{\bar{D}}$$
(4)

while

$$s_{AB} = \left((n_A + n_B) \left(1 - \bar{D}_B \right) \right)^2 \underbrace{n_{AB} (1 - n_{AB}) \left(\frac{\bar{D}_A - \bar{D}_B}{1 - \bar{D}_B} \right) \left(\frac{1 - \bar{D}_A}{1 - \bar{D}_B} \right)}_{\hat{V}_{AB}^{\bar{D}}} / \hat{V}^{\bar{D}}$$
(5)

and

$$s_{BA} = \left((n_A + n_B) \,\bar{D}_A \right)^2 \underbrace{n_{AB} (1 - n_{AB}) \frac{\bar{D}_B}{\bar{D}_A} \left(\frac{\bar{D}_A - \bar{D}_B}{\bar{D}_A} \right)}_{\hat{V}_{BA}^{\bar{D}}} / \hat{V}^{\bar{D}}$$
(6)

The last part of ECON626-L3-A3-timing.do calculates $\hat{V}^{\tilde{D}}$ for the entire sample (i.e. calculates the denominator in the DD weights) and the constructs dummy variables for each of the four 2 × 2 DD timing groups. Extend this code to calculate the fixed-effects-adjusted variance of treatment in each timing group, and use these variances to derive the DD weights in Stata. Confirm that these weights match those derived above.