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Power

e Power:
probability of rejecting... the null, when... the alternative is true.

e |n randomized trials:
probability of having a statistically significant coefficient on
treatment when there is, in fact, an effect of treatment.

e A “power calculation” is... a sample size calculation.
This means predicting... the standard error.
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Coin toss example

e “Null" Hypothesis: the coin is fair
50% chance of heads, 50% chance of tails.

e Structure of the data:
Toss the coin a number of times, count heads.

e The test:
“Fail to reject” null if within some distance of mean under the null;

“Reject” otherwise.

e |f we only had 4 tosses of the coin, what cutoffs could we use?
Could fail to reject under any of these conditions:

> (A) never

> (B) when exactly the mean (2 heads)
> (C) when within 1 (1, 2, or 3 heads)
> or (D) always.

e We don’t want to reject the null when it is true, though;
How much accidental rejection would each possible cutoff give us?
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Distribution of possible results

Distribution of numbers of heads in 4 tosses of a fair coin
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P(2)=.38; P(1..3)=.88; P(0..4)=1
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Types of error

Test result

“Reject Null,” | “Fail to Reject Null,”
Find an effect! | Conclude no effect.
Truth:
There is an effect Great! “Type Il Error”
(low power)
Truth:
There is NO effect | “Type | Error” Great!
(test size)

The probability of Type | error (given the null) is the “size” of the test.
By convention, we are usually interested in tests of “size” 0.05.

The probability of Type Il error is also very important;
If P(failure to detect an effect|there is an effect) = 1 — &,
then the power of the test is k.

Power depends on anticipated effect size; we typically want power > 80%.
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Not enough data even for meaningful test size

e There is no way* to create such a test with four coin tosses so that
the chance of accidental rejection under the “null” hypothesis
(sometimes written Hp) is less than 5%, a standard in social science.

* (Except the “never reject, no matter what” rule. Not very useful.)

e What about 20 coin tosses?
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Distribution of possible results

Distribution of numbers of heads in 20 tosses of a fair coin
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ECON 626: Applied Microeconomics Lecture 7: Power and Clustering, Slide 7

Power with 20 tosses

Probability

012345678 910111213 141516 17 18 19 20
Heads

Fair 75pct heads

Power: about 0.62

ECON 626: Applied Microeconomics Lecture 7: Power and Clustering, Slide 8




Power with 30 tosses

Probability
1
1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Heads

Fair 75pct heads

Power: about 0.80
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Power with 40 tosses

15

Probability

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Heads

Fair

75pct heads

Power: about 0.90
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Power with 100 tosses

Probability
.06
1

.04
1
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Heads

Fair 75pct heads

Power: about 0.9997
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Rejecting H, in critical region

Significance level (test size) o

Probability density

A 4 A

Area: 0/2 0 Area: 0/2

| — Null distn. - False rejection probability o |
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Under an alternative:

Suppose true effect were 1 SE (Standard Error):

Probability density

Null Under 1 SE effect
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Under an alternative:

Power would only be approximately 0.17

Probability density

Null Under 1 SE effect
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Under an alternative:

Suppose true effect were 3 SE’s (Standard Errors):
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Under an alternative:

Power would be approximately 0.85

Probability density

Null Under 3 SE effect

ECON 626: Applied Microeconomics Lecture 7: Power and Clustering, Slide 16




Power calculation, visually

How the power calculation formula works

Probability density

0 Effect
|- Null distn. [II Effect distn. 1o to/2size i t_1-k power]

Note: see the related figure in the Toolkit paper.
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The formula: for power x and size «,

Effect > (t1_,.;+ta/2)5E([§) Notation: t;_, = p' percentile of the t dist'n.

Note that the formula above works no matter the design.
Usually: o = 0.05, k = 0.80, N is large, so:

Minimum Detectable Effect ~ (0.84 + 1.96)SE (/) ~ 2.8SE(3)

We focus on sample size. But how would imperfect compliance or
baseline data affect this? Below, | continue for the standard RCT case.

1 o2 1 o2
MDE = (tl—ﬁ+ta/2) m N ~ (Z]_—H‘FZQ/Z) P(]. _ P) W

In practice (Stata): sampsi
Note: Stata uses z rather than t distribution (skirting D.O.F. issue).
We could also flip this equation around:

= N=(z1_n+ 242)* <P(11— p)) ’ <M§E2)
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The formula: for power x and size «,

Where do these numbers come from, o2 and the effect size?
Two basic options:

e Consider standardized effect sizes in terms of standard deviations

e Draw on existing data: What is available that could inform your
project?
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What if treatment is assigned by groups?
We have been thinking here of randomizing at the individual level.

But in practice, we often randomize larger units.
Examples:

e Entire schools are assigned to treatment or comparison;
we observe outcomes at the level of the individual pupil

e Classes within a school are assigned to treatment or comparison;
we observe outcomes at the level of the individual pupil

e Households are assigned to treatment or comparison;
we observe outcomes at the level of the individual family member

e Sub-district locations are assigned to treatment or comparison;
we observe outcomes at the level of the individual road

e Bank branch offices are assigned to treatment or comparison;
we observe outcomes at the level of the individual borrower

What does this do?
It depends on how much variation is explained by the group each
individual is in.
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What happens to the variance of the estimator?
Suppose y; = ft; + €¢;. We compare the means of those with t; =1 to
those with t; = 0. Departure point: iid ¢; having variance af, and equal
numbers of observations in treatment and control (N/2 in each):

SE(B) = vay /%
This is the formula from before, with P = 1/2:
_1 /e
P1-P)V N
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What happens to the variance of the estimator?

Now suppose y; = SBt; + €;, but €; = vz + 1y for groups g of fixed size
ng. We still compare the means of those with t; = 1 to those with t; = 0.
Departure point: within a group, treatment is either 1 or 0; iid v, having
variance 02, iid 7 having variance 02, so that 0? = 02 + 02, and equal
numbers of observations in treatment and control (still N/2 in each).

Define the “the intra-cluster correlation,” p:

o, __o
Pe= 227" 52
o, ‘o, o¢

Two other ways of writing this will be convenient:

2 _ 2
01/ - pege

72— (1 p)o?
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What happens to the variance of the estimator?
As before,

~ 1 1
PPt 26 i

A 1 1 1 1
TS R 2 N 2 R 2 i e

A 1 1 1 1
W 2 2 2 2
") =N T W i) T W
4 4
SRR
4 2 2
:N (nggu + Un)
4 2 2 4 2
ryl (nngO'E + (1 - pﬁ)ge) = NUE ((ng - l)pe + 1)
3 o2 1 o2
SE(B) = \/Z'\/ vV (ng = 1)pe + 1=/ m'\/ NV (ng —1)pe +1
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The formula

Scale the effective standard error by:

Design Effect (“Moulton factor”) = \/ 1+ (Ngroupsize — 1)p

p (“rho") is the intra-class correlation.
In practice (Stata): loneway and sampclus

Recall earlier formula:

1 o2
MDE = (ti_, + ta/z)“ m\/ W\/l + (Ngroupsize — 1)p

We could also flip this equation around:

— N= (zl_n—i—za/z)z'(P(ll_ P)> .<M7)2E2> (1 + (ngroupsize — 1)p)
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Estimation example: clustered standard errors
Stata:

Vewster = (X'X) ™2 uju(X'X) ™!
j=1

where

uj = E € Xj

Jcluster

Angrist and Pischke 8.2.6:

g

where

&2 &, 6 &, 8é
1g 1g2 g - Clgtngg
s &b &g o Eoglng

W, =aéé, =a

&, &1, &, .8 &

ngg€lg Cngg€2g .- e &
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Estimation example: clustered standard errors

But remember, in the simplest case, Xé’, is either:

11 ... 1 o 0 0 .. O
11 .. 1 11 ... 1
So ,
elg €1g€2g - Clgln.g
A R AD A A
Xg, €2g€1g ng ezge,,gg Xg

~ A A ~ AD
enggelg e,,ggezg engg

Count the terms. diagonal: ng; off-diagonal: ng(ng — 1).
Diagonal terms have expectation o2,

while off-diagonal terms have expectation 02 = po2.
The matrix product then has expectation:

oZng(1+ (ng —1)p) [ } 1 } or 02ng(1+ (ng —1)p) { 8 (1) ]
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Estimation example: clustered standard errors

So:

iz
NS

NS
=

and thus

(X'X)! (Z Xé’,\TIng> (X'X)!

m
O

cl] =E

= (1+(ng —1)p) (X'X)™" 02
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Intra-cluster correlation p (greek letter “rho”)

But where does this p number come from? Two basic options:

e Consider what might be reasonable assumptions

e Draw on existing data (again):
What is available that could inform your project?
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Intra-class correlations we have known

Data source ICC (p)
Madagascar Math + Language 0.5
Busia, Kenya Math + Language 0.22
Udaipur, India Math + Language 0.23

Mumbai, India Math + Language 0.29
Vadodara, India Math + Language 0.28

Busia, Kenya Math 0.62
Busia, Kenya Language 0.43
Busia, Kenya Science 0.35
Duflo, Glennerster, and Kremer (2006) Using Randomization in Development Economics Research:
A Toolkit
Data source ICC (p)
US Elementary Math, unconditional 0.22
US Elementary Math, rural only, unconditional 0.15
US Elementary Math, rural only, conditional on previous scores 0.12

Hedges & Hedberg (2007), Intraclass correlations for planning group randomized experiments in

rural education.
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More

variations for another time

Imperfect compliance with treatment
Multiple treatments, multiple testing
Actual mechanics of randomization
Covariates, stratification

Small numbers of groups

Bayes' rule and power

Attrition

Alternative tests

“A first comment is that, despite all the precision of these formulas,
power calculations involve substantial guess work in practice.”
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