
Economics 240A Fall 2006

Midterm Exam
October 18, 2006

Instructions: This is a closed book exam, but you may refer to one sheet of notes. You have 80 minutes
for the exam. Answer as many questions as possible. Partial answers get partial credit. Please write
legibly. Good luck!

Problem 1 (10 points). For two of the three statements below, determine whether or not the statement
is correct, and give a brief (e.g., a bluebook page or less) justification for your answer.

(a) Suppose X ∼ Ber (p) for some p ∈ (0, 1) ; that is, suppose X is discrete with pmf

f (x|p) = px (1− p)1−x 1 (x ∈ {0, 1}) ,

where 1 (·) is the indicator function. Then E [log f (X|q)] ≤ E [log f (X|p)] for every q ∈ (0, 1) .

The statement is correct. To give a constructive proof, let

M (q) = E [log f (X|q)] = (1− p) log (1− q) + p log q.

Now,

d

dq
M (q) = −

1− p

1− q
+

p

q
=

p− q

q (1− q)
,

d2

dq2
M (q) = −

1− p

(1− q)2
−

p

q2
< 0,

so argmaxq∈(0,1)M (q) = p, as claimed.
An alternative proof, which has the advantage that it generalizes easily to more complicated distribu-

tions, starts by using Jensen’s inequality (applicable because log (·) is concave) to show that

E [log f (X|q)] = E

(
log

[
f (X|q)

f (X|p)
· f (X|p)

])
= E

[
log

f (X|q)

f (X|p)

]
+E [log f (X|p)]

≤ log

(
E

[
f (X|q)

f (X|p)

])
+E [log f (X|p)] .

Now, because the support of f (·|p) does not depend on p ∈ (0, 1) ,

E

[
f (X|q)

f (X|p)

]
=
∑

x∈R

f (x|q)

f (x|p)
f (x|p) =

∑

x∈R

f (x|q) = 1, q ∈ (0, 1) .

As a consequence,

E [log f (X|q)] ≤ log




E

[
f (X|q)

f (X|p)

]

︸ ︷︷ ︸
=1




+E [log f (X|p)] = E [log f (X|p)] .
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(b) Suppose X1, . . . ,Xn is a random sample with Xi ∼ Ber (p) , where p ∈ P ⊂ (0, 1) is unknown. Because
the pmf f (·|p) can be written as

f (x|p) = 1 (x ∈ {0, 1}) (1− p) exp

[
x log

(
p

1− p

)]
,

the sufficient (for p) statistic
∑n
i=1Xi is complete if and only if P contains an open interval.

The statement is incorrect. The “if” part is correct, but the “only if” part is not. For example, if n = 1
and P = {p1, p2} with p1 �= p2, then

∑n
i=1Xi = X1 and the condition

Ep

[

g

(
n∑

i=1

Xi

)]

= Ep [g (X1)] = 0 ∀p ∈ P

reduces to the system of linear equations

(
1− p1 p1
1− p2 p2

)(
g (0)
g (1)

)
=

(
0
0

)
,

whose unique solution is given by g (0) = g (1) = 0 (implying in particular that Pp [g (
∑n
i=1Xi) = 0] = 1

for every p ∈ P). (If n > 1, then a similar argument shows that
∑n
i=1Xi is complete whenever P has at

least n+ 1 members.)

(c) Suppose X1, . . . , Xn is a random sample from a continuous distribution with pdf f (·|θ) , where θ ∈ Θ ⊆
R is unknown. Then an unbiased estimator θ̂ of θ (with finite variance) is a uniform minimum variance
unbiased estimator of θ if and only if

Covθ

(
θ̃ − θ̂, θ̂

)
= 0 ∀θ ∈ Θ

for any other unbiased estimator θ̃ of θ (with finite variance).

The statement is correct. Indeed, if Covθ

(
θ̃ − θ̂, θ̂

)
= 0, then

V arθ

(
θ̃
)
= V arθ

[(
θ̃ − θ̂

)
+ θ̂

]
= V arθ

(
θ̃ − θ̂

)

︸ ︷︷ ︸
≥0

+ V arθ

(
θ̂
)
+ 2Covθ

(
θ̃ − θ̂, θ̂

)

︸ ︷︷ ︸
=0

≥ V arθ

(
θ̂
)
,

showing the validity of the “if” part. For the “only if” part, notice that if θ̂ and θ̃ are unbiased estimators

of θ, then (1− λ) θ̂ + λθ̃ = θ̂ + λ
(
θ̃ − θ̂

)
is an unbiased estimator of θ, implying that if θ̂ is a uniform

minimum variance unbiased estimator of θ, then

V arθ

[
θ̂ + λ

(
θ̃ − θ̂

)]
= V arθ

(
θ̂
)
+ λ2V arθ

(
θ̃ − θ̂

)
+ 2λCovθ

(
θ̃ − θ̂, θ̂

)

is minimized (with respect to λ) by setting λ = 0. A necessary condition for this to occur is that

∂

∂λ
V arθ

[
θ̂ + λ

(
θ̃ − θ̂

)]∣∣∣∣
λ=0

= 2Covθ

(
θ̃ − θ̂, θ̂

)
= 0.
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Problem 2 (40 points, each part receives equal weight). Let X1, . . . ,Xn be a random sample from
a continuous distribution with cdf

FX (x|θ) =
[
a (θ) + b (θ)x−1/θ

]
1 (x > 1) ,

where θ ∈ Θ = (0, 1) is an unknown parameter, a (·) and b (·) are some functions (with argument θ), and
1 (·) is the indicator function.

(a) Show that a (θ) = 1 and b (θ) = −1.

To solve for a (θ) and b (θ) , we will use the fact that if FX (·|θ) is a cdf, then

lim
x→∞

FX (x|θ) = 1

and (by right-continuity)

lim
x↓1

FX (x|θ) = FX (1|θ) .

First, because limx→∞ FX (x|θ) = a (θ) , the fact that limx→∞ FX (x|θ) = 1 implies that a (θ) = 1. Next,
because limx↓1 FX (x|θ) = a (θ) + b (θ) should equal FX (1|θ) = 0, we have b (θ) = −a (θ) = −1.

(b) Find fX (·|θ) , “the” pdf of X. Is {fx (·|θ) : θ ∈ Θ} an exponential family of pdfs?

The cdf is continuously differentiable on (1,∞) , with derivative

∂

∂x
FX (x|θ) =

∂

∂x

[
1− x−1/θ

]
=
1

θ
x−(θ+1)/θ.

Therefore, “the” pdf of X is given by

fX (x|θ) =
1

θ
x−(θ+1)/θ1 (x > 1) = 1 (x > 1)

1

θ
exp

(
−

θ + 1

θ
log x

)
,

where the last expression shows that {fx (·|θ) : θ ∈ Θ} is an exponential family of pdfs.

(c) Let Yi = log (Xi) . Find FY (·|θ) , the cdf of Y. Also, show that a pdf of Y is given by

fY (y|θ) =
1

θ
exp

(
−
1

θ
y

)
1 (y > 0) .

Because log (·) is strictly increasing, we have:

FY (y|θ) = Pθ (Yi ≤ y) = Pθ [log (Xi) ≤ y] = Pθ [Xi ≤ exp (y)] = FX [exp (y) |θ]

=

[
1− exp

(
−
1

θ
y

)]
1 (y > 0) .
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This cdf is continuously differentiable on (0,∞) , with derivative

∂

∂y
FX (y|θ) =

∂

∂x

[
1− exp

(
−
1

θ
y

)]
=
1

θ
exp

(
−
1

θ
y

)
.

Therefore, “the” pdf of Y is given by

fY (y|θ) =
1

θ
exp

(
−
1

θ
y

)
1 (y > 0) .

(d) Show that E (Xi) = 1/ (1− θ) and use this fact to derive a method moments estimator θ̂MM,X of θ. Is

θ̂MM,X an unbiased estimator of θ?

We have:

E (Xi) =

∫ ∞

−∞
xfX (x|θ) dx =

∫ ∞

1

1

θ
x−1/θdx = −

1

1− θ
x−(1−θ)/θ

∣∣∣∣
∞

x=1

=
1

1− θ
.

As a consequence, θ = 1− 1/E (Xi) and a method moments estimator of θ is given by θ̂MM,X = 1− 1/X̄.
By Jensen’s inequality (applied to the convex function 1/x),

E
(
θ̂MM,X

)
= 1−E

(
1/X̄

)
< 1− 1/E

(
X̄
)
= 1− 1/E (Xi) = θ,

implying in particular that θ̂MM,X a biased estimator of θ.

(e) Show that E (Yi) = θ and use this fact to derive a method moments estimator θ̂MM,Y of θ. Is θ̂MM,Y
an unbiased estimator of θ?

We have:

E (Yi) =

∫ ∞

0

1

θ
y exp

(
−
1

θ
y

)
dy = −y exp

(
−
1

θ
y

)∣∣∣∣
∞

y=0

+ θ

∫ ∞

0

1

θ
exp

(
−
1

θ
y

)
dy

︸ ︷︷ ︸
=
∫
∞

−∞
fY (y|θ)dy=1

= θ,

where the second equality uses integration by parts. Therefore, θ̂MM,Y = Ȳ is an (unbiased) method
moments estimator of θ.
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(f) Find the log likelihood function and show that the maximum likelihood estimator of θ is given by

θ̂ML =
1

n

n∑

i=1

log (Xi) .

The log likelihood function is

ℓ (θ|X1, . . . ,Xn) =
n∑

i=1

log fX (Xi|θ) =
n∑

i=1

log



1
θ
1 (Xi > 1)
︸ ︷︷ ︸

≡1

exp

(
−

θ + 1

θ
logXi

)



= −n log θ −

(
1 +

1

θ

) n∑

i=1

logXi.

Because

∂

∂θ
ℓ (θ|X1, . . . , Xn) = −

n

θ
+
1

θ2

n∑

i=1

logXi,

∂2

∂θ2
ℓ (θ|X1, . . . , Xn) =

n

θ2
−
2

θ3

n∑

i=1

logXi = −
1

θ

∂

∂θ
ℓ (θ|X1, . . . ,Xn)−

1

θ3

n∑

i=1

logXi

︸ ︷︷ ︸
>0

,

θ̂ML = n−1
∑n
i=1 logXi is the unique solution to the equation ∂ℓ (θ|X1, . . . ,Xn) /∂θ = 0 and furthermore

satisfies ∂2ℓ
(
θ̂ML|X1, . . . , Xn

)
/∂θ < 0. As a consequence, θ̂ML is the maximum likelihood estimator of θ.

(g) Show that θ̂ML is a complete, sufficient statistic for θ and find a uniform minimum variance unbi-
ased estimator of θ.

It follows from (f) and the factorization criterion that θ̂ML is sufficient. Moreover, because

{
θ + 1

θ
: θ ∈ Θ

}
=

{
1 +

1

θ
: 0 < θ < 1

}
= (2,∞)

contains an open set, it follows from (b) and the properties of exponential families that θ̂ML is complete.
To show that θ̂ML is a uniform minimum variance unbiased estimator of θ, it therefore suffices to show

that θ̂ML is unbiased. In turn, this result follows from part (e) and the fact that θ̂ML = θ̂MM,Y .
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(h) Compute the Cramér-Rao bound (on the variance of unbiased estimators of θ). Is this bound attained
by the estimator from (g)?

The Fisher information is given by

I (θ) = V ar

[
∂

∂θ
ℓ (θ|X1, . . . , Xn)

]
= V ar

(

−
n

θ
+
1

θ2

n∑

i=1

logXi

)

=
n

θ4
V ar (logXi) =

n

θ2
,

where the last equality uses the fact that

V ar (logXi) = V ar (Yi) = E
(
Y 2
i

)
−E (Yi)

2 = θ2,

a result which itself follows from (e) and the fact that

E
(
Y 2
i

)
=

∫ ∞

0

1

θ
y2 exp

(
−
1

θ
y

)
dy = −y2 exp

(
−
1

θ
y

)∣∣∣∣
∞

y=0

+ 2θ

∫ ∞

0

1

θ
y exp

(
−
1

θ
y

)
dy

︸ ︷︷ ︸
=E(Yi)=θ

= 2θ2,

where the second equality uses integration by parts. The Cramér-Rao bound is I (θ)−1 = θ2/n, which is
attained by θ̂ML because

V ar
(
θ̂ML

)
= V ar

(
1

n

n∑

i=1

logXi

)

=
V ar (logXi)

n
=

θ2

n
.
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