
BGSE Development Economics Summer School

Day 3:

Analyzing Data from RCTs

Professors: Pamela Jakiela and Owen Ozier



The Basics



Overview of the Research Process

data cleaning

data checking

data analysis

writing

Are important variables missing, wrong, or incorrectly coded?

Summarize variables; assess balance, compliance, and attrition

Estimate treatment effects (Woo hoo!)

Buy The Little Book of Research Writing, hire a copy editor
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Regression Analysis of Randomized Experiments
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Simple regression framework for analyzing RCTs: Yi = α + βDi + εi

• Treatment indicator Di = 0, 1 ⇒ only two possible values of Ŷi
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Basic Regression Equation

More formally, we know that β̂ = (X ′X )−1X ′y

What does this mean in an RCT (or any binary treatment) context?
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Basic Regression Equation

Regress the outcome on... the treatment indicator and a constant

Xi = [Di 1]

Suppose pN observations have Di = 1 and half have Di = 0

X =



D1 1
D2 1
... ...

D(1−p)N 1
D(1−p)N+1 1
D(1−p)N+2 1

... ...
DN 1


=



0 1
0 1
... ...
0 1
1 1
1 1
... ...
1 1


; Y =



Y1

Y2

...
Y(1−p)N

Y(1−p)N+1

Y(1−p)N+2

...
YN
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Basic Regression Equation

Set up X ′X :

[
0 0 ... 0 1 1 ... 1
1 1 ... 1 1 1 ... 1

]


0 1
0 1
... ...
0 1
1 1
1 1
... ...
1 1


=

 pN pN

pN N



Equivalently, we can write:[
pN pN
pN N

]
= pN

[
1 1
1 1/p

]
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Basic Regression Equation

Recall the formula for inverting a 2×2 matrix:[
a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]

Or, equivalently, we can write:(
pN

[
1 1
1 1/p

])−1

=
1

pN

[
1 1
1 1/p

]−1

=
1

pN

(
p

1− p

)[
1/p −1
−1 1

]
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Basic Regression Equation

What about X ′y?

[
0 0 ... 0 1 1 ... 1
1 1 ... 1 1 1 ... 1

]


Y1

Y2

...
Y(1−p)N

Y(1−p)N+1

Y(1−p)N+2

...
YN


=


N∑

i=(1−p)N+1

Yi

N∑
i=1

Yi



=


∑
T

Yi

∑
T

Yi +
∑
C

Yi

 =

 pNȲT

pNȲT + (1− p)NȲC
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Basic Regression Equation

We can now compute: β̂ = (X ′X )−1X ′y

1

N(1− p)

[
1/p −1
−1 1

]  pNȲT

pNȲT + (1− p)NȲC



=
1

N(1− p)

 NȲT − pNȲT − (1− p)NȲC

− pNȲT + pNȲT + (1− p)NȲC



=

 ȲT − ȲC

ȲC

 =

[
β̂1

β̂2

]
= β̂
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Basic Regression Equation with Controls

More typical regression specification:

Y1,i = α + βDi + δX1,i + γY0,i + τstrata + εi

We will typically want to include these controls:

• Dummies for randomization strata (κstrata)

• Baseline covariates that are not balanced across treatments∗

• Baseline covariates that predict the outcome

I Baseline values of outcome variables are (sometimes) most important

We do not want to include:

• Controls that could be impacted by treatment
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“You Don’t Have to Take My Word For It”
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“You Don’t Have to Take My Word For It”
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“You Don’t Have to Take My Word For It”
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“You Don’t Have to Take My Word For It”
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Variations on a Theme

• Treatment effect heterogeneity

I Traditional approach: interact baseline covariate with treatment

I What cool kids are doing: machine learning Davis & Heller (2017)

• Multiple treatments, cross-cutting designs

• Quantile regressions, distribution tests/regressions

I The mean (in “average treatment effect”) may not be of interest

I Alternative statistics may yield greater power
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Compliance with Treatment



How High Is Take-Up?

Even “free” programs are costly for participants, and take-up is often low

Intervention Take-Up Source

Business training 65% McKenzie & Woodruff (2013)

Deworming medication 75% Kremer & Miguel (2007)

Microfinance 13% – 31% JPAL & IPA (2015)

Only people who do a program can be impacted by the program∗

⇒ We might like to know how much a program impacted participants
(it depends on our notion of treatment)

∗Some restrictions apply
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Imperfect Compliance

True model when outcomes are impacted by program participation (Pi ):

Yi = α + βPi + εi

• Program take-up is endogenous conditional on treatment

• Only those randomly assigned to treatment (Ti = 1) are eligible

We estimate standard regression specification:

Yi = α + βTi + εi

What do we get?

BGSE Development Economics Summer School Day 3: Analyzing Data from RCTs, Slide 19



Imperfect Compliance

Modifying our standard OLS equation, we get:

β̂ = E [Yi |Ti = 1]− E [Yi |Ti = 0]

= α + βE [Pi |Ti = 1] + εi − (α + βE [Pi |Ti = 0] + εi )

= βE [Pi |Ti = 1]

= βλ

where λ < 1 is the take-up rate in the treatment group

⇒ Low compliance scales down the estimated treatment effect
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Treatment on the Treated

0
1

2
3

4
5

6

D
ep

en
de

nt
 V

ar
ia

bl
e

 

0 1
Treatment Status

Control group
Treatment group: take-up = 0
Treatment group: take-up = 1

Your colleague suggests comparing the compliers to the control group

⇒ Is this a good idea?

BGSE Development Economics Summer School Day 3: Analyzing Data from RCTs, Slide 21



Treatment on the Treated: A Thought Experiment

evaluation
sample

N = 200

assigned
treatments

NT = 100

program
take-up

25 percent

outcomes

ȲT = 2
ȲT = 0

Questions:

• What was the average outcome among those who did the program?

• What does this suggest about the impact of treatment?
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Treatment on the Treated: Intuition

The treatment on the treated (TOT) estimator:

β̂tot =
E [Yi |Ti = 1]− E [Yi |Ti = 0]

E [Pi |Ti = 1]− E [Pi |Ti = 0]

Intuitively, the TOT scales up the ITT effect to reflect imperfect take-up

• Assumption: treatment only works through program take-up

I Not always obvious whether this is true
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Treatment on the Treated: Implementation

Estimated via two-stage least squares (2SLS):

Yi = α1 + β1P̂i + εi [IV regression]

Pi = α2 + β2Ti + νi [first stage]

Easy to implement using Stata’s ivregress 2sls command
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What Does Treatment on the Treated Measure?

T = 0 T = 1

always takers always takers

compliers compliers

never takers never takers

TOT estimates local average treatment effect (LATE) on compliers

• Monotonicity assumption: there are no defiers

• When violated, TOT tells us about weighted difference between
treatment effects on compliers and defiers... but it gets complicated
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Alternative Experimental Designs



Q: When Is an RCT Not Just an RCT?

A: When SUTVA is violated! (Just kidding. Sort of.)

Exogenous variation from RCT can feed into creative research designs

• Deworming medication in Kenya (Miguel & Kremer 2004)

I Cluster-randomized design to account for treatment spillovers

I Exploit (random) variation in treatment status of children in
neighboring schools to estimate spillovers from mass deworming

I Use randomized phased-in design to identify (eventual) never-takers
in comparison schools, compare to never-takers in treatment schools

I Ozier (2018) uses same school-based deworming experiment to
measure spillovers on younger siblings (under age 2 when “treated”)

• Re-randomization to separate selection, treatment effects
(Karlan & Zinman 2009; Leaver, Ozier, Serneels, & Zeitlin 2009)
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Multiple Hypothesis Testing



Multiple Hypothesis Testing: The Problem

Consider testing 100 true null hypotheses — how many will rejected?

• What sort of ninny would test 100 hypotheses?

• Valid reasons for testing many hypotheses:

I Studies often have 2 or 3 treatment arms (and rightly so!)

I Difficult to predict which outcomes will be affected

I Particularly true for secondary hypotheses/treatment effects

I Different measures of the same outcome often available

I Heterogeneity in treatment effects (across sub-samples)

How can we (credibly) test multiple hypotheses?
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Bonferroni Corrections

Most conservative approach is the Bonferroni method∗

• Problem: you wish to test hypotheses H1, ...Hk using a test size of α

• Solution (of sorts): use a test size of α/k instead

I Family-wise error rate (FWER): probability of rejecting a false null

I Bonferroni correction holds FWER below α

I Bonferroni corrections are too conservative:

I FWER ≈ 0.04877 when number of independent tests is large

I Bonferroni corrections can be extremely conservative when tests are
not independent (consider example of perfectly correlated tests)

Good news: if you are testing k hypotheses and a Bonferroni correction
works (i.e. your results hold up), you don’t need the rest of this lecture

∗Purportedly developed by Olive Jean Dunn and not, ahem, Carlo Emilio Bonferroni
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Stepdown Methods

Holm (1979) proposes a less conservative stepdown method:

0. Order k p-values from smallest to largest, p(1), p(2), ..p(k)

1a. If p(1) > α/k , stop. Fail to reject all hypotheses

1b. Reject H(1) if p(1) < α/k . Proceed to Step 2.

2a. If p(2) > α/(k − 1), stop. Fail to reject all remaining hypotheses.

2b. Reject H(2) if p(2) < α/(k − 1). Proceed to Step 3.
...

j. Repeat as needed until you stop rejecting hypotheses because
p(j) > α/(k − (j − 1)) or all k hypotheses have been rejected

More good news: Romano & Wolf (JASA, 2005) state “This procedures
holds under arbitrary dependence on the joint distribution of p-values.”
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Stepdown Methods

More complicated/powerful bootstrap-based stepdown methods exist

• Examples: Westfall & Young (1993), Romano & Wolf (2005)

• These procedures exploit additional assumptions to increase power
(so you don’t need them if simpler methods “work” in your setting)

• They are also more computationally-intensive, often including
phrases like “efficient computation” or “computationally feasible”

• Approaches generally use some form of stepdown structure

I At each step, “accept”/reject decisions use empirical distribution of
bootstrapped p-values associated with not-yet-rejected hypotheses
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Controlling the False Discovery Rate

Anderson (JASA, 2008): “[Family-wise error rate] adjustments become
increasingly severe as the number of tests grows — it is inherent in
controlling the probability of making a single false rejection.”

• Alternative is to tolerate some small number of false positives

The false discovery rate: expected proportion of rejections that are
Type I errors (i.e. where null was true and should not have been rejected)

• FWER and FDR are identical under the null (all rejections are errors)

• When some null hypotheses are false, FDR adjustments can be less
stringent than FWER adjustments (because FDR < FWER)
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Controlling the False Discovery Rate

Benjamini & Hochberg (1995) propose an approach to FDR control:

1. Order k p-values from smallest to largest, p1, p2, ..., pj , ..., pk ,
where j indicates the rank of the p-value for a specific hypothesis

2. Rejecting all p-values with pj < qj/k yields an expected FDR no
higher than q when p-values are independent or positively correlated

All of the procedures discussed so far modify test sizes (“accept”/reject)

• We often want an adjusted p-value, not a yes/no decision

Anderson (2008) proposed intuitive approach to calculating BH q-values:

• Rescale p-values by number of hypotheses / p-value rank

• Adjust for non-monotonicity
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Multiple Test Corrections: Example

p-value Bonferroni Holm (0.05) Anderson

0.001 0.005 0.005 0.005

0.002 0.010 0.008 0.005

0.040 0.200 0.120 0.05125

0.041 0.205 − 0.05125

0.099 0.495 − 0.099
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Multiple Hypothesis Testing: Summary

Try to avoid testing a large number of hypotheses

• Aggregate your main outcomes into indices (when appropriate)

• Consider pre-specifying “surprising” relationships

Try a simple approach to p-value adjustment (when appropriate)

• Rescale p-values à la Bonferroni or Anderson (2008)

• User-written Stata program rwolf (when appropriate)

Be suspicious of (your own and others’) p-values near significance cutoffs
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Attrition



Attrition as Selection Bias

Angrist and Pishke (2008):

“The goal of most empirical economic research is to overcome selection
bias, and therefore to say something about the causal effect...”

Motivation 1:

• What do we do when an RCT should identify the effect of interest,
but there is attrition from the sample (i.e. missing endline data)?

• What if that attrition is differential across arms?

Motivation 2:

• What can we do when outcomes (e.g. profits) are not always
observed and are more likely to be observed in treatment group?
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Attrition as Selection Bias: An Example
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No attrition:  β = 0.9684

BGSE Development Economics Summer School Day 3: Analyzing Data from RCTs, Slide 39



Random Attrition Is OK
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Attrition at random in control group:  β = 0.9792
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Non-Random Attrition Is a Problem
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Non-random attrition in control group:  β = 0.6211
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Non-Random Attrition Is a Problem

We want to know if business training increases micro-enterprise profits

• We only observe profits (Y ) for business that still exist (Z ≥ 0)

The true model of profits is given by:

Y ∗ = βD + δ1 + U

Z∗ = γD + δ2 + V

Y = 1[Z∗ ≥ 0]

Standard approach to estimating treatment effects yields:

β̂ITT = E [Y |D = 1]− E [Y |D = 0]

= β + E [U|D = 1,V ≥ −δ2 − γ]− E [U|D = 0,V ≥ −δ2]︸ ︷︷ ︸
selection bias if U and V are not independent
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Approaches to Selection Bias from Attrition

Approach 1: implement Heckman two-step correction for selection

• Drawback: requires an instrument for selection into sample

Approach 2: implement Manski bounds (Horowitz and Manski 2000)

• Makes no assumptions besides bounded support for the outcome

I What is the worst-case scenario for missing observations?

• Replaces missing values with maximum or minimum in the support

• Drawback: results may be uninformative (i.e. CIs may be wide)

I Manksi bounds still serve as a useful benchmark

I May work well with certain (e.g. binary) outcomes
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Manski Upper Bound: Attrition from Control Group
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Non-random attrition, imputed with minimum:  β = 1.1695
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Manski Lower Bound: Attrition from Control Group
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Non-random attrition, imputed with maximum:  β = -0.2860
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Bounds Under Monotonicity

Approach 3: Lee (2009) derives bounds under monotonicity assumption

“treatment... can only affect sample selection in ‘one direction’ ”

Monotonicity allows us to ignore those who attrit from both arms

• Bounded support not required (not imputing missing values)

• Throw away highest/lowest values from less-attritted study arm

• Identifies the average treatment effect for never-attriters
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Bounds Under Monotonicity

Each individual characterized by (Y ∗1 ,Y
∗
0 ,S

∗
1 ,S

∗
0 ):

• Y ∗1 ,Y
∗
0 are potential outcomes

• S∗1 ,S
∗
0 are potential outcomes for attrition

I Observed in sample when S = S∗
1 D + S∗

0 (1− D) = 1

I Never-attritors: S∗
1 = S∗

0 = 1

I Marginal types: S∗
1 = 1 and S∗

0 = 0

I This assumes treatment reduces attrition, but it can go either way
(but not both ways as the same time under monotonicity)
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Bounds Under Monotonicity

Recall our simple example:

E [Y |D = 0] = E [Y ∗|D = 0,Z∗ ≥ 0]

= δ1 + E [U|D = 0,V ≥ −δ2]

E [Y |D = 1] = E [Y ∗|D = 1,Z∗ ≥ 0]

= δ1 + β + E [U|D = 1,V ≥ −δ2 − γ]

We need to know E [U|D = 1,V ≥ −δ2] to identify treatment effect β

• Notice that those with V ≥ −δ2 are never-attritors

• Those with −δ2 − γ ≤ V < −δ2 only attrit from control group
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Bounds Under Monotonicity

E [Y |D = 1,Z∗ ≥ 0] is a weighted average:

= (1− p)E [Y ∗|D = 1,V ≥ −δ2]︸ ︷︷ ︸
outcome among never-attrittors

+p E [Y ∗|D = 1,−δ2 − γ ≤ V < −δ2]︸ ︷︷ ︸
outcome among marginal types

where p = Pr [−δ2 − γ ≤ V < −δ2]/Pr [V ≥ −δ2 − γ]

Throwing out p observations allows us to bound treatment effect:

“We cannot identify which observations are inframarginal
and which are marginal. But the ‘worst-case’ scenario is that

the smallest p values of Y belong to the marginal group.
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Lee Bounds in Theory

LB = E [Y |D = 1,S = 1,Y ≤ y1−p0 ]− E [Y |D = 0,S = 1]

UP = E [Y |D = 1,S = 1,Y ≥ yp0 ]− E [Y |D = 0, S = 1]

yq = G−1(q) where G is the CDF of Y conditional on D = 1,S = 1

po =
Pr [S = 1|D = 1]− Pr [S = 1|D = 0]

Pr [S = 1|D = 1]
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Lee (Upper) Bounds in Practice
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Included observations

Non-random attrition, trimming low values in treatment group:  β = 0.9632
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Lee (Lower) Bounds in Practice
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Trimmed observations

Included observations

Non-random attrition, trimming low values in treatment group:  β = 0.2763
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Lee Bounds in Practice
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Lee Bounds in Practice: Confidence Intervals

For the entire interval, you can do better than:[
∆̂LB − 1.96

σ̂LB√
n
, ∆̂UB + 1.96

σ̂UB√
n

]
Instead (Imbens and Manski 2004), use:[

∆̂LB − C̄n
σ̂LB√
n
, ∆̂UB + C̄n

σ̂UB√
n

]
where C̄n satisfies:

Φ

(
C̄n +

√
n

∆̂UB − ∆̂LB

max(σ̂LB , σ̂UB)

)
− Φ

(
−C̄n

)
= 0.95
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Lee Bounds in Practice: Covariates

Estimating Lee bounds within bins narrows bounds

• The tightened bounds are averages over X = x bins

• ITT effects are also weighted across bins

• If attrition is concentrated in specific cells, we can limit bounding
exercise to the component of average where attrition actually occurs
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Lee Bounds in Practice: leebounds in Stata
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