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Lecture 2, Part 1:

Power in Randomized Trials



Power

• Power:
probability of rejecting... the null, when... the alternative is true.

• In randomized trials:
probability of having a statistically significant coefficient on
treatment when there is, in fact, an effect of treatment.

• A “power calculation” is... a sample size calculation.
This means predicting... the standard error.
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Coin toss example
• “Null” Hypothesis: the coin is fair

50% chance of heads, 50% chance of tails.

• Structure of the data:
Toss the coin a number of times, count heads.

• The test:
“Fail to reject” null if within some distance of mean under the null;
“Reject” otherwise.

• If we only had 4 tosses of the coin, what cutoffs could we use?
Could fail to reject under any of these conditions:

I (A) never

I (B) when exactly the mean (2 heads)

I (C) when within 1 (1, 2, or 3 heads)

I or (D) always.

• We don’t want to reject the null when it is true, though;
How much accidental rejection would each possible cutoff give us?
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Distribution of possible results
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Types of error

Test result

“Reject Null,” “Fail to Reject Null,”
Find an effect! Conclude no effect.

Truth:
There is an effect Great! “Type II Error”

(low power)
Truth:

There is NO effect “Type I Error” Great!
(test size)

The probability of Type I error (given the null) is the “size” of the test.
By convention, we are usually interested in tests of “size” 0.05.

The probability of Type II error is also very important;
If P(failure to detect an effect|there is an effect) = 1− κ,
then the power of the test is κ.

Power depends on anticipated effect size; we typically want power ≥ 80%.

BGSE Development Lecture 2: RCT Power and Design, Slide 6



Not enough data even for meaningful test size

• There is no way* to create such a test with four coin tosses so that
the chance of accidental rejection under the “null” hypothesis
(sometimes written H0) is less than 5%, a standard in social science.
* (Except the “never reject, no matter what” rule. Not very useful.)

• What about 20 coin tosses?
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Distribution of possible results
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Power with 20 tosses
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Power with 30 tosses
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Power with 40 tosses
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Power with 100 tosses
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Rejecting H0 in critical region
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Under an alternative:

Suppose true effect were 1 SE (standard error):
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Under an alternative:

Suppose true effect were 1 SE (standard error):
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Under an alternative:

Power would only be approximately 0.17
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Under an alternative:

Suppose true effect were 3 SEs (standard errors):
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Under an alternative:

Suppose true effect were 3 SEs (standard errors):
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Under an alternative:

Power would be approximately 0.85
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Power calculation, visually

How the power calculation formula works

Effect (in SE units)

Area: 1-α
(α=size)

Area: κ
(κ=power)

t1-κ

t1-α/2
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Note: see the related figure in the Toolkit paper.
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The formula: for power κ and size α,

Effect > (t1−κ+tα/2)SE (β̂) Notation: t1−p = pth percentile of the t dist’n.

Note that the formula above works no matter the design.
Usually: α = 0.05, κ = 0.80, N is large, so:

Minimum Detectable Effect ≈ (0.84 + 1.96)SE (β̂) ≈ 2.8SE (β̂)

We focus on sample size. But how would imperfect compliance or
baseline data affect this? Below, I continue for the standard RCT case.

MDE = (t1−κ+tα/2)

√
1

P(1− P)

√
σ2

N
≈ (z1−κ+zα/2)

√
1

P(1− P)

√
σ2

N

In practice (Stata): sampsi
Note: Stata uses z rather than t distribution (skirting D.O.F. issue).
We could also flip this equation around:

⇐⇒ N = (z1−κ + zα/2)2 ·
(

1

P(1− P)

)
·
(

σ2

MDE 2

)
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The formula: for power κ and size α,

Where do these numbers come from, σ2 and the effect size?
Two basic options:

• Consider standardized effect sizes in terms of standard deviations

• Draw on existing data: What is available that could inform your
project?
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What if treatment is assigned by groups?
We have been thinking here of randomizing at the individual level.
But in practice, we often randomize larger units.
Examples:

• Entire schools are assigned to treatment or comparison;
we observe outcomes at the level of the individual pupil

• Classes within a school are assigned to treatment or comparison;
we observe outcomes at the level of the individual pupil

• Households are assigned to treatment or comparison;
we observe outcomes at the level of the individual family member

• Sub-district locations are assigned to treatment or comparison;
we observe outcomes at the level of the individual road

• Bank branch offices are assigned to treatment or comparison;
we observe outcomes at the level of the individual borrower

What does this do?
It depends on how much variation is explained by the group each
individual is in.
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What happens to the variance of the estimator?
Suppose yi = βti + εi . We compare the means of those with ti = 1 to
those with ti = 0. Departure point: iid εi having variance σ2

ε , and equal
numbers of observations in treatment and control (N/2 in each):

β̂ =
1

N/2

∑
T

yi −
1

N/2

∑
C

yi

β̂ = β +
1

N/2

∑
T

εi −
1

N/2

∑
C

εi

Var(β̂) =
1

N/2
σ2
ε +

1

N/2
σ2
ε =

4

N
σ2
ε

SE (β̂) =
√

4

√
σ2
ε

N

This is the formula from before, with P = 1/2:√
1

P(1− P)

√
σ2

N
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What happens to the variance of the estimator?

Now suppose yi = βti + εi , but εi = νg + ηig for groups g of fixed size
ng . We still compare the means of those with ti = 1 to those with ti = 0.
Departure point: within a group, treatment is either 1 or 0; iid νg having
variance σ2

ν , iid ηig having variance σ2
η, so that σ2

ε = σ2
ν + σ2

η, and equal
numbers of observations in treatment and control (still N/2 in each).
Define the “the intra-cluster correlation,” ρ:

ρε =
σ2
ν

σ2
ν + σ2

η

=
σ2
ν

σ2
ε

Two other ways of writing this will be convenient:

σ2
ν = ρεσ

2
ε

σ2
η = (1− ρε)σ2

ε
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What happens to the variance of the estimator?

Let’s think through two pieces of εi and the variance of their sums; we
will need this in just a moment. Within a single study arm (so consider
N/2 observations). First, the simple case, ηig :

Var

(
1

N/2

∑
arm

ηig

)
=

1

(N/2)2 Var

(∑
arm

ηig

)

=
1

(N/2)2 Var

(N/2)∑
1

ηig


=

1

(N/2)2

(
N

2

)
σ2
η

=
1

N/2
σ2
η
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What happens to the variance of the estimator?
Let’s think through two pieces of εi and the variance of their sums; we
will need this in just a moment. Within a single study arm (so consider
N/2 observations). Now, the slightly more complicated case, νg :

Var

(
1

N/2

∑
arm

νg

)
=

1

(N/2)2 Var

(∑
arm

νg

)

=
1

(N/2)2 Var

(N/2ng )∑
1

ngνg


=

1

(N/2)2 n2
gVar

(N/2ng )∑
1

νg


=

1

(N/2)2 n2
g

(
N

2ng

)
σ2
ν

=
ng

N/2
σ2
ν
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What happens to the variance of the estimator?
As before,

β̂ = β +
1

N/2

∑
T

εi −
1

N/2

∑
C
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β̂ = β +
1

N/2

∑
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1

N/2

∑
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∑
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Var(β̂) =
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σ2
η +
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σ2
ν +

1

N/2
σ2
η

=
4ng

N
σ2
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4

N
σ2
η

=
4

N

(
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2
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η
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=

4
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(
ngρεσ

2
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)
=

4

N
σ2
ε ((ng − 1)ρε + 1)

SE (β̂) =
√

4

√
σ2
ε

N

√
(ng − 1)ρε + 1 =

√
1

P(1− P)

√
σ2

N

√
(ng − 1)ρε + 1
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The formula

Scale the effective standard error by:

Design Effect (“Moulton factor ′′) =
√

1 + (ngroupsize − 1)ρ

ρ (“rho”) is the intra-class correlation.
In practice (Stata): loneway and sampclus

Recall earlier formula:

MDE = (t1−κ + tα/2)

√
1

P(1− P)

√
σ2

N

√
1 + (ngroupsize − 1)ρ

We could also flip this equation around (swapping z for t):

⇐⇒ N = (z1−κ+zα/2)2·
(

1

P(1− P)

)
·
(

σ2

MDE 2

)
·(1 + (ngroupsize − 1)ρ)
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Estimation example: clustered standard errors
Stata:

Vcluster = (X ′X )−1
nc∑
j=1

u′juj(X ′X )−1

where
uj =

∑
jcluster

eixi

Angrist and Pischke 8.2.6:

Ω̂cl = (X ′X )−1

(∑
g

X ′g Ψ̂gXg

)
(X ′X )−1

where

Ψ̂g = aêg ê′g = a


ê2

1g ê1g ê2g ... ê1g êngg
ê2g ê1g ê2

2g ... ê2g êngg
... ... ... ...

êngg ê1g êngg ê2g ... ê2
ngg


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Estimation example: clustered standard errors

But remember, in the simplest case, X ′g is either:[
1 1 ... 1
1 1 ... 1

]
or

[
0 0 ... 0
1 1 ... 1

]
So

X ′g


ê2

1g ê1g ê2g ... ê1g êngg
ê2g ê1g ê2

2g ... ê2g êngg
... ... ... ...

êngg ê1g êngg ê2g ... ê2
ngg

Xg

Count the terms. diagonal: ng ; off-diagonal: ng (ng − 1).
Diagonal terms have expectation σ2

ε ,
while off-diagonal terms have expectation σ2

ν = ρσ2
ε .

The matrix product then has expectation:

σ2
εng (1 + (ng − 1)ρ)

[
1 1
1 1

]
or σ2

εng (1 + (ng − 1)ρ)

[
0 0
0 1

]
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Estimation example: clustered standard errors

So:

E

[(∑
g

X ′g Ψ̂gXg

)]
= σ2

ε (1 + (ng − 1)ρ)

 N
2

N
2

N
2 N


This is a familiar matrix - it is X ′X !

and thus

E
[
Ω̂cl

]
=E

[
(X ′X )−1

(∑
g

X ′g Ψ̂gXg

)
(X ′X )−1

]

= (1 + (ng − 1)ρ) (X ′X )−1 σ2
ε
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Intra-cluster correlation ρ (greek letter “rho”)

But where does this ρ number come from before you have endline data?
Two basic options:

• Consider what might be reasonable assumptions

• Draw on existing data (again):
What is available that could inform your project?
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Intra-class correlations we have known

Data source ICC (ρ)
Madagascar Math + Language 0.5
Busia, Kenya Math + Language 0.22
Udaipur, India Math + Language 0.23
Mumbai, India Math + Language 0.29
Vadodara, India Math + Language 0.28
Busia, Kenya Math 0.62
Busia, Kenya Language 0.43
Busia, Kenya Science 0.35

Duflo, Glennerster, and Kremer (2006) Using Randomization in Development Economics Research:

A Toolkit

Data source ICC (ρ)
US Elementary Math, unconditional 0.22
US Elementary Math, rural only, unconditional 0.15
US Elementary Math, rural only, conditional on previous scores 0.12

Hedges & Hedberg (2007), Intraclass correlations for planning group randomized experiments in

rural education.
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More variations

For discussion or further reading:

• Imperfect compliance with treatment;

• Alternative tests

• Small numbers of groups

• “A first comment is that, despite all the precision of these formulas,
power calculations involve substantial guess work in practice.”

May be discussed in later lectures:

• Multiple treatments, multiple testing, attrition

Next:

• Actual mechanics of randomization; covariates; stratification
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Lecture 2, Part 2:

Design and Balance in Randomized Trials



Besides statistics, registration

Economics: since 2012
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Besides statistics, registration

Other disciplines: this example since 2000

Other registries include non-RCTs, focus on specific fields, etc.
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Besides statistics, documentation: CONSORT
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Besides statistics, documentation: CONSORT
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CONSORT-style example from QJE
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CONSORT-style example from ECRQ
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Besides statistics, documentation: CONSORT
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Besides statistics, documentation: CONSORT

Some of these are clearly more applicable to economics than others.
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Besides statistics, documentation: CONSORT
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Besides statistics, documentation: CONSORT
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Bruhn and McKenzie - Approach

A survey of practitioners, then six datasets:

• Microenterprise profits in Sri Lanka

• Employment survey in Mexico

• Indonesia Family Life Survey: children in school

• Indonesia Family Life Survey: household expenditure

• Learning & Educational Achievement Project (Pakistan): math test

• Learning & Educational Achievement Project: height z-score

BGSE Development Lecture 2: RCT Power and Design, Slide 47



Bruhn and McKenzie - Approach

Then, five randomization methods:

• Randomization (single random draw)

• Stratification

• Pair-wise matching

• Rerandomization: redraw if anything is significant

• Rerandomization: minimum maximum t statistic
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Bruhn and McKenzie - Approach

Really important: choosing the variables.

“The set of outcomes we have chosen spans a range
of the ability of the baseline variables to predict future
outcomes. At one end is microenterprise profits in Sri
Lanka, where baseline profits and 6 baseline individual
and firm characteristics explain only 12.2 percent of the
variation in profits 6 months later. ... The math test
scores and height z-scores in the LEAPS data have the
most variation explained by baseline characteristics, with
43.6 percent of the variation in follow-up test scores ex-
plained by the baseline test score and 6 baseline charac-
teristics.”
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Bruhn and McKenzie - Recommendation 1

“Better reporting of the method of random assignment is needed.
This should include a description of:
a. Which randomization method was used and why.
b. Which variables were used for balancing?
c. For stratification, how many strata were used?
d. For rerandomization, which cutoff rules were used?
This is particularly important for experiments with small samples, where
the randomization method makes more difference.”

(Obvious in retrospect?)
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Bruhn and McKenzie - Recommendation 2

“Clearly describe how the randomization was carried out in practice.
a. Who performed the randomization?
b. How was the randomization done (coin toss, random number
generator, etc.)?
c. Was the randomization carried out in public or private?”
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Bruhn and McKenzie - Recommendation 3

“Re-think the common use of rerandomization.
Our simulations find pair-wise matching to generally perform as well, or
better, than rerandomization in terms of balance and power, and like
rerandomization, matching allows balance to be sought on more variables
than possible under stratification. Adjusting for the method of
randomization is statistically cleaner with matching or stratification than
with rerandomization.”

BGSE Development Lecture 2: RCT Power and Design, Slide 52



Bruhn and McKenzie - Recommendation 4

“When deciding which variables to balance on, strongly consider the
baseline outcome variable and geographic region dummies, in
addition to variables desired for subgroup analysis.”
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Bruhn and McKenzie - Recommendation 5

“Be aware that over-stratification can lead to a loss of power in
extreme cases. This is because using a large number of strata involves a
downside in terms of loss in degrees of freedom when estimating standard
errors, possibly more cases of missing observations, and odd numbers
within strata when stratification is used.”
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Bruhn and McKenzie - Recommendation 6

“As ye randomize, so shall ye analyze.” (Include dummies for strata
in analysis.) “Similarly, pair dummies should be included for matched
randomization, or linear variables used for rerandomizations.”
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Bruhn and McKenzie - Recommendation 7

“In the ex post analysis, do not automatically control for baseline
variables that show a statistically significant difference in means.
The previous literature, and our simulations, suggest that it is a better
rule to control for variables that are thought to influence follow-up
outcomes, independent of whether their difference in means is
statistically significant or not. ... One should still be cautious in the use
of ex post controls, given the potential for finite-sample bias if treatment
heterogeneity is correlated with the square of these covariates.”
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McKenzie (2012)

“The vast majority of randomized experiments in economics rely on a
single baseline and single follow-up survey. While such a design is suitable
for study of highly autocorrelated and relatively precisely measured
outcomes in the health and education domains, it is unlikely to be
optimal for measuring noisy and relatively less autocorrelated outcomes
such as business profits, and household incomes and expenditures.
Taking multiple measurements of such outcomes at relatively short
intervals allows one to average out noise, increasing power. When the
outcomes have low autocorrelation and budget is limited, it can make
sense to do no baseline at all. Moreover, I show how for such outcomes,
more power can be achieved with multiple follow-ups than allocating the
same total sample size over a single follow-up and baseline. I also
highlight the large gains in power from ANCOVA analysis rather than
difference-in-differences analysis when autocorrelations are low.”
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