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Do Hospitals Make People Healthier?

Your health status is: excellent, very good, good, fair, or poor?

Hospital No Hospital Difference

Health status 3.21 3.93 −0.72∗∗∗

(0.014) (0.003)

Observations 7,774 90,049

A simple comparison of means suggests that going to the hospital makes
people worse off: those who had a hospital stay in the last 6 months are,
on average, less healthy than those that were not admitted to the hospital

• What’s wrong with this picture?
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Potential Outcomes

We are interested in the relationship between “treatment” and
some outcome that may be impacted by the treatment (eg. health)

Outcome of interest:

• Y = outcome we are interested in studying (e.g. health)

• Yi = value of outcome of interest for individual i

For each individual, there are two potential outcomes:

• Y0,i = i ’s outcome if she doesn’t receive treatment

• Y1,i = i ’s outcome if she does receive treatment
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Potential Outcomes

Alejandro has a broken leg.

• Y0,a = If he doesn’t go to the hospital, his leg doesn’t heal properly

• Y1,a = If he goes to the hospital, his leg heals completely

Benicio doesn’t have any broken bones. His health is fine.

• Y0,b = If he doesn’t go to the hospital, his health is still fine

• Y1,b = If he goes to the hospital, his health is still fine

The fundamental problem of causal inference:

We never observe both potential outcomes for the same individual

BGSE Development Economics Summer School Day 1: The Randomization Revolution, Slide 4



Potential Outcomes

For any individual, we can only observe one potential outcome:

Yi =

{
Y0i if Di = 0

Y1i if Di = 1

where Di is a treatment indicator (equal to 1 if i was treated)

• Each individual either participates in the program or not

• The causal impact of program (D) on i is: Y1i − Y0i

We only observe i ’s actual outcome:

Yi = Y0i + (Y1i − Y0i )︸ ︷︷ ︸
impact

Di

Example: Alejandro goes to the hospital, Benicio does not
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Establishing Causality

In an ideal world (research-wise), we could clone each treated individual
and observe the impacts of treatment on the outcomes of interest

vs.

What is the impact of giving Lisa a textbook on her test score?

• Impact = Lisa’s score with a book - Lisa’s score without a book

In the real world, we either observe Lisa with a textbook or without

• We never observe the counterfactual

BGSE Development Economics Summer School Day 1: The Randomization Revolution, Slide 6



Establishing Causality

To measure the causal impact of giving Lisa a book on her test score,
we need to find a similar child that did not receive a book

vs.

Our estimate of the impact of the book is then the difference in test
scores between the treatment group and the comparison group

• Impact = Lisa’s score with a book - Bart’s score without a book

As this example illustrates, finding a good comparison group is hard
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Average Causal Effects

What we actually want to know is the average causal effect,
but that is not what we get from a difference in means comparison

Difference in group means

= average causal effect of program on participants + selection bias

Even in a large sample:

• People will choose to participate in a program when they expect the
program to make them better off (i.e. when Y1,i − Y0,i > 0)

• The people who choose to participate are likely yo be different than
those who choose not to. . . even in the absence of the program
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Mathematical Expectations

The mathematical expectation of Yi , E [Yi ]:

• Equivalent to the sample average in an infinitely large population

• For example, the mathematical expectation tells us the probability
that a coin lands with heads facing up when you flip it; it is
equivalent to the fraction heads after a (very) large number of flips

In a small sample, the average of Yi might be anything; but the law of
large numbers tells us that the average of Yi gets very close to E [Yi ]
as the number of observations (that we are averaging over) gets large

Conditional expectation:

E [Yi |Pi = z ]

The conditional expectation of Yi given a dummy variable Pi = z ,
is the average of Yi in an infinite population that has Pi = z .
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Selection Bias

When we compare (many) participants to (many) non-participants:

Difference in group means = E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

Adding in −E [Y0,i |Di = 1] + E [Y0,i |Di = 1]︸ ︷︷ ︸
=0

, we get:

Difference in group means

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1]︸ ︷︷ ︸
average causal effect on participants

+E [Y0,i |Di = 1]− E [Y0,i |Di = 0]︸ ︷︷ ︸
selection bias
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How Can We Estimate Causal Impacts?

Quasi-experimental approaches:

• Difference-in-difference estimation

I Idea: combine pre/post + treated/untreated designs

I Requirement: common trends in treatment, comparison groups

• Instrumental variables

I Idea: find a source of exogenous variation in treatment

I Requirement: a valid instrument (satisfying the exclusion restriction)

• Regression discontinuity

I Idea: exploit explicit rules (cutoffs) for assigning treatment

I Requirement: the existence of discontinuity
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How Can We Estimate Causal Impacts?

Alternatives approaches:

• Conditional Independence Assumption (CIA) approaches

I “θ̂hfb” – Associate Professor Bryan Graham, UC Berkeley

I Matching estimators (i.e. propensity score matching)

I Coefficient stability (robustness to controls)

I Explicit models of selection into treatment

• Natural experiments (when treatment is as-good-as-random)

I Example: rainfall shocks in childhood (Maccini and Yang 2009)

I Closely related to instrumental variables approach
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How Can We Estimate Causal Impacts?

Experimental approach:

• Random assignment to treatment: eligibility for program is
literally determined at random, e.g. via pulling names out of hat

The law of large numbers tells us that a sample average can be brought
as close as we like to the population average just by enlarging the sample

When treatment is randomly assigned,
the treatment, control groups are random samples of a single population
(e.g. the population of all eligible applicants for the program)

⇒ E [Y0,i |Di = 1] = E [Y0,i |Di = 0] = E [Y0,i ]

Expected outcomes are the same in the absence of the program
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Random Assignment & the Law of Large Numbers

The law of large numbers tells us that a sample average can be brought
as close as we like to the population average just by enlarging the sample

Example: imagine that I want to evaluate the impact (on test scores)
of my brand new “get an A or your money back guarantee” program

• I choose two students at random, one treatment and one control

• I flip a coin to determine which one gets an automatic A grade

• The other student is “the counterfactual” — no guaranteed A

How does the treated student’s grade compare to the control student’s?

Are these students comparable in the absence of the program?
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Random Assignment Eliminates Selection Bias

If treatment is random and E [Y0,i |Di = 1] = E [Y0,i |Di = 0] = E [Y0,i ]

• In practice, we should be wary of small samples

The difference in means estimator gives us the average treatment effect:

Difference in group means

= E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1] + E [Y0,i |Di = 1]− E [Y0,i |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1]︸ ︷︷ ︸
average treatment effect on participants

+E [Y0,i ]− E [Y0,i ]︸ ︷︷ ︸
=0

= E [Y1,i ]− E [Y0,i ]︸ ︷︷ ︸
ATE
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Internal Validity

Excellent news: random assignment eliminates selection bias∗

∗Some restrictions apply

The Stable Unit Treatment Value Assumption (SUTVA):

• “The potential outcomes for any unit do not vary with the
treatments assigned to other units.”

Source: Imbens and Rubin (2015)

When is SUTVA likely to be violated?
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SUTVA Violations

Causal effects in the presence of spillovers:

• What is the appropriate unit of randomization?

I Cluster-randomized trials make sense when spillovers are anticipated

• When can we use additional assumptions to measure the direct and
indirect effects of treatment (e.g. via multi-level randomization)?

• When can we anticipate the direction of bias?
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Internal Validity: Additional Assumptions?

Imbens and Rubin include a second component of SUTVA:

• “There are no different forms or versions of each treatment level
which lead to different potential outcomes.”

This terminology is not standard, and the assumption is often violated

• Treatments often vary across locations or strata

• Cox (1958) proposes an alternative: “either only average treatment
effects are required, or that the treatment effects are constant”

I In other words, we’ll always have internal validity

I External validity is another matter

Gerber and Green (2012) highlight an add’l assumption, excludability:
the treatment shouldn’t be confounded (well, duh, right?)
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Randomization: A History of Thought



Randomization: A Timeline

1885 Pierce and Jastrow use randomization in a psychology experiment
(varying order in which different stimuli are presented to subjects)

1898 Johannes Fibiger conducts a trial of an anti-diphtheria serum in which
every other subject is assigned to treatment (or control)

1923 Neyman suggests the idea of potential outcomes

1925 Fisher suggests the explicit randomization of treatments
(in the context of agriculture experiments)

1926 Amberson et al study of sanocrysin treatments for TB: coin flipped to
determine which group receives treatment, which group serves as controls

1942 Launch of Cambridge-Somerville Youth Study of at-risk boys

1948 Randomized trial of streptomycin treatment for TB conducted by the
Medical Research Council of Great Britain

1962 Perry preschool experiment in Ypsilanti, MI

1974 Rubin introduces the concept of potential outcomes (as we know it)
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The Lady Tasting Tea

Chapter II of Fisher’s The Design of Experiments begins:

“A lady declares that by tasting a cup of tea made with milk
she can discriminate whether the milk or the tea infusion

was first added to the cup.”

Critical lesson to take away from this anecdote:
Caffeine breaks with colleagues are critical to the advancement of science

• The lady in question was biologist Muriel Bristol, who worked with
Fisher at the Rothamsted Experimental Station in Harpenden, UK

• H0: Fisher believes that Dr. Bristol cannot taste the difference

• A test of the hypothesis: “Our experiment consists in mixing eight
cups of tea, four in one way and four in the other, and presenting
them to the subject for judgment in a random order.”
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The Lady Tasting Tea: Experimental Design

Rule #1: do not confound your own treatment

• Critical assumption: if Dr. Bristol is unable to detect whether the
milk was poured in first, then she will choose 4 cups at random

• Fisher points out that the experimenter could screw this up:

“If all those cups made with the milk first had sugar added,
while those made with the tea first had none,

a very obvious difference in flavour would have been introduced
which might well ensure that all those made with sugar

should be classed alike.”

• Gerber and Green refer to this as excludability
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The Lady Tasting Tea: Experimental Design

Rule #1B: do not accidentally confound your own treatment

• Fisher, in (perhaps) the earliest known scientific subtweet:

“It is not sufficient remedy to insist that ‘all the cups
must be exactly alike’ in every respect except that to be tested.

For this is a totally impossible requirement.”

• To minimize the likelihood of accidentally confounding your
treatment, the best approach is to constrain yourself by randomizing

I Randomization minimizes the likelihood of unfortunate coincidences

I This was a highly controversial position at the time, and it is still
debated in some circles; the alternative is to force balance
(on observables, and then just hope that unobservables don’t matter)
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The Lady Tasting Tea: a Hypothesis Test

How should we interpret data from this experiment?

Suppose Dr. Bristol correctly identified all 4 “treated” cups

• How likely is it that this outcome could have occurred by chance?

I There are
(

8
4

)
= 70 possible ways to choose 4 of 8 cups

I Only one is correct; a subject with no ability to discriminate between
treated and untreated cups would have a 1/70 chance of success

I The p-value associated with this outcome is 1/70 ≈ 0.014, which is
less than the cutoff for the “standard level of significance” of 0.05
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The Lady Tasting Tea: a Hypothesis Test

How should we interpret data from this experiment?

Suppose Dr. Bristol correctly identified 3 “treated” cups

• How likely is it that this outcome could have occurred by chance?

I There are
(

4
3

)
×
(

4
1

)
= 16 possible ways to choose 3 of 8 cups

I There are 17 ways to choose at least 3 correct cups

I The p-value associated with this outcome is 17/70 ≈ 0.243

I We should not reject the null hypothesis

The only experimental result that would lead to the rejection of
the null hypothesis was correct identification of all 4 treated cups

• In the actual experiment, the null hypothesis was rejected
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Fisher’s Exact Test

Identified by Dr. Bristol?

No Yes

Milk poured first a b

Tea poured first c d

Is Dr. Bristol more likely to select cups where the milk was poured first?

probability =

(
a + b

a

)(
c + d

c

)
(
a + b + c + d

a + c

) =
(a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!(a + b + c + d)!

The p-value is the sum of the probabilities of outcomes that are at
least as extreme (i.e. contrary to H0) as the observed outcome
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The Lady Tasting Tea: Size and Power

The size of a test is the likelihood of rejecting a true null

• Fisher asserts that tests of size 0.05 are typical

Alternative experiment: what if we had treated 3 out of 6 cups of tea?

• There are
(

6
3

)
= 20 possible ways to choose 3 of 6 cups

• Best possible p-value is therefore 0.05

Alternative experiment: what if we had treated 3 out of 8 cups of tea?

• There are
(

8
3

)
= 56 possible ways to choose 3 of 8 cups

• Best possible p-value is therefore 0.017

⇒ Optimal to have equal numbers of treated, untreated cups
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The Lady Tasting Tea: Size and Power

An alternate experiment: an unknown number of treated cups

• Under the null, the probability of getting 8 right is 1 in 28

• Probability of getting 7 right is 8/256 = 0.03125

This design would achieve higher power with the same number of trials

• Possible to reject the hypothesis that the lady tasting tea cannot tell
the difference even when her ability to discriminate is imperfect
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Ronald Fisher’s Contributions to Statistics

1. Introduced the modern randomized trial

2. Introduced the idea of permutation tests

3. Reminded us of the importance of caffeine

Fisher’s permutation-based approach to inference is not the norm in
economics; our default is regression analysis and classical statistics
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Randomization: A Timeline

1885 Pierce and Jastrow use randomization in a psychology experiment
(varying order in which different stimuli are presented to subjects)

1898 Johannes Fibiger conducts a trial of an anti-diphtheria serum in which
every other subject is assigned to treatment (or control)

1923 Neyman suggests the idea of potential outcomes

1925 Fisher suggests the explicit randomization of treatments
(in the context of agriculture experiments)

1926 Amberson et al study of sanocrysin treatments for TB: coin flipped to
determine which group receives treatment, which group serves as controls

1942 Launch of Cambridge-Somerville Youth Study of at-risk boys

1948 Randomized trial of streptomycin treatment for TB conducted by the
Medical Research Council of Great Britain

1962 Perry preschool experiment in Ypsilanti, MI

1974 Rubin introduces the concept of potential outcomes (as we know it)
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RCTs in Development Economics

The PROGRESA Evaluation in Mexico

• Mexico began piloting conditional cash transfers in the mid-1990s

• After initial piloting, PROGRESA was evaluated through an RCT
(thanks to economists Santiago Levy and Jose Gomez de Leon)

• Researchers at IFPRI wrote the first evaluations in the late 1990s

Michael Kremer and the ICS/Busia Lab

• Michael Kremer convinced used personal connections to convince a
small Dutch NGO (ICS-Africa) to randomize school interventions

• RCTs on flip charts (w/ Glewwe, Moulin, & Zitzewitz) and
deworming (w/ Miguel) launched the randomista movement
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RCTs in Development Economics
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The Analysis of Experiments



Regression Analysis of Randomized Evaluations
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Independent variable can only take on two values: 0 and 1

So, all data points fall on one of two vertical lines: Di = 0 or Di = 1
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Regression Analysis of Experiments

Suppose we estimate an OLS regression of the form:

Yi = α + βDi + εi

When Di is a dummy variable,

E [β̂] = E [Yi |Di = 1]− E [Yi |Di = 0]

When the true model is one of constant (i.e. homogeneous) effects,

Y1,i = δ + Y0,i

It is clear that E [β̂] = δ when treatment is randomly assigned
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Regression Analysis of Randomized Evaluations

E [Yi ] = a + b · Di , so there are two possible predicted values:

• E [Y
∣∣Di = 0] =

• E [Y
∣∣Di = 1] =

⇒ b = E [Y
∣∣Di = 1]− E [Y

∣∣Di = 0]

Interpretation of results when independent variable is a dummy:

• Estimate of a tells us average of dependent variable when C = 0

• Estimate of b tells us difference between average of dependent
variable when Di = 1 and average of dependent variable when
Di = 0
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A Randomized Thought Experiment



Constant Treatment Effects? Really?

Consider the hospitalization example?

• Is it reasonable to assume that treatment effects are homogeneous?

• No. Clearly, people go to the hospital when they are sick

A more interesting thought experiment:

• z = i ’s health if she doesn’t get sick

• s = the reduction in health associated with sickness

• b = benefit a sick person receives from treatment

• c = the reduction in health from going to the hospital

Reasonable to assume that b > c > 0
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Potential Outcomes: Hospital Example

Y0,i Y1,i

Sick z − s z − s + b − c

Not sick z z − c

What happens without random assignment?

• Do healthy people go to the hospital?

• Do sick people go to the hospital?
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Life without Random Assignment

Let Si be an indicator for being sick

• E [Si |Di = 1] = ?

• E [Si |Di = 0] = ?

What do we learn from a comparison of means?

difference in means = E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

= z − s + b − c − z

= b − c − s

Difference in means is the treatment effect on those who choose
to take up the treatment (i.e. on the sick) plus selection bias
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Random Assignment: Entire Population

Suppose, absurdly, we randomize who goes to the hospital such that:

λ = E [Si |Di = 1] = E [Si |Di = 0] = E [Si ]

Randomization breaks the link between illness and going to the hospital

What does the difference in means tell us?

difference in means = E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

= z − E [Si |Di = 1] (s − b)− c︸ ︷︷ ︸
=E [Y1,i |Di=1]

−{z − E [Si |Di = 0]s}︸ ︷︷ ︸
=E [Y0,i |Di=0]

= z − λs + λb − c − (z − λs)

= λb − c

Difference in means = ATE of hospitalization on the population
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Random Assignment: Sick People

Suppose we randomize treatment assignment among the sick:

E [Si |Di = 1] = E [Si |Di = 0] = 1

What does the difference in means tell us?

difference in means = E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

= z − s + b − c︸ ︷︷ ︸
=E [Y1,i |Di=1]

− {z − s}︸ ︷︷ ︸
=E [Y0,i |Di=0]

= b − c

Difference in means = ATE of hospitalization on the sick

Is this the ideal experiment? Why or why not?
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Random Assignment: Endogenous Take-Up

We might consider randomizing access to treatment:

• Let Ti be an indicator for random assignment to a treatment group
that is allowed to choose whether or not to go to the hospital

• Those in the control group cannot use the hospital

Q: Who will choose to go to the hospital?

• A: People who get sick during the study

• E [Di |Ti = 1] = ?

When take-up is endogenous, we (usually) have imperfect compliance

• With one-sided non-compliance: compliers vs. never-takers
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Random Assignment: Endogenous Take-Up

What does the difference in means tell us in this case?

difference in means = E [Y1,i |Ti = 1]− E [Y0,i |Ti = 0]

= z + E [Si |Ti = 1] (−s + b − c)︸ ︷︷ ︸
=E [Y1,i |Ti=1]

−{z − E [Si |Ti = 0]s}︸ ︷︷ ︸
=E [Y0,i |Ti=0]

= z − λs + λb − λc − (z − λs)

= λ (b − c)

Difference in means = ATE of access to hospitalization

• The ATE is the intent-to-treat effect

• ITT = compliance × effect of treatment on the treated

BGSE Development Economics Summer School Day 1: The Randomization Revolution, Slide 44



External Validity

Three randomized evaluations, three average treatment effects

• How much can we learn from a single study?

• How much can we learn without a model?

A more realistic evaluation scenario would have considered:

• A broader range of heterogeneous treatment effects

• Two-sided non-compliance

I Encouragement designs may increase take-up among the healthy

None of these problems is specific to randomized evaluations
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External Validity

In many early randomized evaluations, the ATE of interest was clear

• The impact of new seed varieties on crop yields

• The impact of medical treatments on patients with specific ailments

Economists consider a very broad range of “treatments”

• The impact of access to credit

• The impact of having two children of the same gender

• The impact of going on the Hajj

• The impact of sunshine on the 4th of July during childhood

A good research idea requires (1) identification and (2) a model
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